
django-lfs Documentation
Release dev

Kai Diefenbach

Mar 12, 2017

Contents

1 Overview 1

2 Installation 3

3 Upgrade notes 7

4 Getting Started 9

5 Information for Users 13

6 Information for Developers 87

7 Miscellaneous Information 123

8 Indices and Tables 125

i

ii

CHAPTER 1

Overview

What is LFS?

LFS is an online shop based on widely-used software: Python, Django and jQuery. It is open source, free, easy to use,
secure and fast.

Features

For an up-to-date list of features please visit the official website: http://www.getlfs.com/features.

How To Read This Documentation

You should start with the concepts of LFS to get an overview what it can do and what not. After that you might go
through the getting started tutorial. Once you have done this you could try to enter the data you like. When you stuck
look into the how- tows for users or refer to the management interface reference.

Note: If you haven’t installed a shop yet you may use the demo shop to try things out. Please be aware that we reset
it every two hours.

Information

There are several places where you can find additional information and help:

• Download on PyPi

• Demo shop

1

http://www.getlfs.com/features
http://demo.getlfs.com/
http://pypi.python.org/pypi/django-lfs#downloads
http://demo.getlfs.com/

django-lfs Documentation, Release dev

• Source code

• Google Group

• Twitter

• IRC channel

• Professional support

2 Chapter 1. Overview

http://bitbucket.org/diefenbach/django-lfs
http://groups.google.com/group/django-lfs
http://twitter.com/lfsproject
http://www.getlfs.com/service-providers

CHAPTER 2

Installation

Prerequisites

Make sure you have installed:

• Python 2.6.x or 2.7.x

• A RDBMS of your choice (PostgreSQL, MySQL, SQLite or Oracle)

Installation

The installation is straightforward and should last just a few minutes. Please execute following steps:

1. Download the installer from http://pypi.python.org/pypi/django-lfs

2. $ tar xzf django-lfs-installer-<version>.tar.gz

3. $ cd lfs-installer

4. $ python bootstrap.py

5. $ bin/buildout -v

6. Enter your database settings to lfs_project/settings.py

7. $ bin/django migrate

8. $ bin/django lfs_init

9. $ bin/django collectstatic

10. $ bin/django runserver

11. Browse to http://localhost:8000

Note: If you encounter problems, please see trouble shooting.

3

http://pypi.python.org/pypi/django-lfs
http://localhost:8000

django-lfs Documentation, Release dev

Note: If you’re setting up a production environment then you should not use Django’s builtin development server
(bin/django runserver). Instead, you’ll probably want to use uWsgi or Gunicorn servers. Check Django (and
uWsgi/Gunicorn) documentation for details.

Note: For production environments you’re supposed to change robots.txt file (otherwise bots/crawlers like google bot
will not be allowed to scan your site, which is not what you probably want). Default version of robots.txt is located
at lfs_theme application: templates/lfs/shop/robots.txt. You should create your own ‘mytheme’ app with structure
like: templates/lfs/shop/robots.txt and place it in settings.INSTALLED_APPS before(!) ‘lfs_theme’. Also note, that
in production environment it is good to serve robots.txt directly from HTTP server like nginx or Apache.

Migration from version 0.9 to version 0.10

Migration starting from 0.10 is based on Django’s default migrations, see: https://docs.djangoproject.com/en/1.8/
topics/migrations/

1. Install the new LFS version

2. Backup your existing database

3. Enter your existing database to lfs_project/settings.py

4. $ bin/django migrate

Migration from versions 0.5 - 0.8 to version 0.10

Migrations from 0.5 - 0.8 to version 0.10 needs an intermediate step through version 0.9.

Migration from versions 0.5 - 0.8 to version 0.9

Migration from versions 0.5 - 0.8 to version 0.9 can be done with a migration command (lfs_migrate) which
migrates existing databases up to version 0.9.

1. Install the 0.9

2. Backup your existing database

3. Enter your existing database to lfs_project/settings.py

4. $ bin/django syncdb

5. $ bin/django lfs_migrate

Migration from version 0.9 to version 0.10

1. Install the 0.10 LFS version

2. Backup your existing database

3. Enter your existing database to lfs_project/settings.py

4. $ bin/django migrate

4 Chapter 2. Installation

https://docs.djangoproject.com/en/1.8/topics/migrations/
https://docs.djangoproject.com/en/1.8/topics/migrations/

django-lfs Documentation, Release dev

What’s next?

Move on to Getting Started.

2.5. What’s next? 5

django-lfs Documentation, Release dev

6 Chapter 2. Installation

CHAPTER 3

Upgrade notes

Below is a description of changes that are useful to know about when upgrading LFS to newer version

Upgrading from 0.7.x to 0.8.x

This is not full reference of changes but at least some of them are described:

• currency templatetag always returns HTML now, eg. Fr. 999, previously HTML
was only returned for negative values

• currency templatetag in text email templates (lfs_theme/templates/lfs/mail/order_details.txt) was removed in
favour of currency_text templatetag. The latter one doesn’t return HTML (ever).

• lfs/base.html has slightly different structure to the footer and colophon sections due to incorrect width of these
elements in previous layout. div.colophon-inner and div.footer-inner html elements were added, both with
padding: 10px set in main.css. padding: 10px was removed from ‘#footer .container’ and ‘#colophon .con-
tainer’ in main.css

• update_editor method in lfs_tinymce.js has been modified and requires tinymce 3.5.8 which is now being used.
References to tinymce were changed in manage_base.html and lfs_tinymce.js

• filter portlet has been updated to allow for manufacturer filtering and because of that its template:
lfs_theme/templates/lfs/portlets/filter.html was modified - manufacturer filtering section has been added

• Small change at lfs/templates/manage/product/product.html - removed onkeypress from filter input element in
favour of css class ‘disable-enter-key’. Changed lfs.manage.js to add event handler for ‘disable-enter-key’.

• Added new ORDER state: PREPARED that can be used to mark orders as prepared to be sent.

• Added new signal and setting that allows defining extra ORDER_STATES. Signal is order_state_changed and
option is LFS_EXTRA_ORDER_STATES. New states should start with id 20 or higher to avoid conflicts with
built in states.

• Use ‘SHOP’ instead of ‘shop’ in lfs/shop/shop.html

7

django-lfs Documentation, Release dev

• Added position column to PropertyGroups and ability to order these with drag & drop in management panel -
modified lfs.manage.js and management template for property groups.

• Added LFS_CHECKOUT_NOT_REQUIRED_ADDRESS setting. This allows to change address that is not
required at checkout page. Changed one_page_checkout.html template, lfs.js and OnePageCheckout Form.

• refactored lfs.manage.js - do not use live anymore. Updated manage/export/export.html,
manage/export/export_inline.html, manage/manufactuers/manufacturer.html and man-
age/manufacturers/manufacturer_inline.html to use data-url instead of just ‘data’ and use
elem.data(‘something’) in JavaScript

• added <div id=”portlets-dialog” title=”{% trans “Portlets dialog” %}”></div> to manage_base.html to handle
properly inerting images to TinyMCE within portlets dialog (changes to lfs.manage.js with portlets dialog)

• added some SEO related attributes to templates and canonical tags for variants

• modified catalog/views.py -> category_products and catalog/views.py -> category_categories return value, so
that it now contains pagination data for use in main template (SEO optimization with rel=”next/prev” (template:
lfs/catalog/category_base.html)

• modified mimetype returned by ajax calls to: application/json. This requireS changes in javascript ajax calls:
lfs.js, lfs.manage.js, lfs_tinymce.js, manage/product/attachments.html(!)

• moved javascript code from manage/product/images.html to lfs.manage.product.js and updated to use proper
mimetypes in responses

8 Chapter 3. Upgrade notes

CHAPTER 4

Getting Started

This document explains the first steps after the shop has been installed. For the installation process please refer to
Installation. If you want to know more about single data fields within the forms below, you can just click on the Help
menu, which opens the context aware help.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Enter Shop Preferences

1. Browse http://localhost:8000/manage.

2. Login, if you aren’t yet.

3. Browse to Shop / Preferences.

4. Go to the Shop tab.

5. Enter the Name. This is the name of the shop, for instance ACME Inc which is used on several places, e.g. as
part of the meta title of all HTML pages.

6. Enter the Shop Owner. This is the full name of the shop owner.

7. Enter From E-mail Address. This e-mail address is used as sender for all e-mails which are sent from the
shop, e.g. the order confirmation mail to the shop customer.

8. Enter Notification E-Mail Addresses. To this addresses all notification messages will be sent. For
example, if an order has been submitted.

9. Click on the Save Shop button.

10. Go to the Default Values tab.

11. Select the default Price Calculator:. This is the default for all products, if the price calculator is not
explicitly selected on a product.

9

http://demo.getlfs.com
http://localhost:8000/manage

django-lfs Documentation, Release dev

12. Select Invoice Countries and Shipping Countries. All selected countries will be available to the
shop customers for selection.

13. Select Default Country. This country will be preselected as default country.

14. Click on the Save Default Values button.

Add Product Taxes

1. Go to Shop / Product Taxes and click on the Add Product Tax button.

2. Enter the Rate (in percentage), for instance 19.0.

3. Click on the Add Tax button.

4. You can add more taxes by clicking on the Add Product Tax site action and executing steps 2 to 3.

Add Delivery Times

1. Go to Shop / Delivery Times and click on the Add Delivery Time button.

2. Enter Min, the minimal delivery time.

3. Enter Max, the maximal delivery time.

4. Enter the Unit of this delivery time.

5. Click on the Add Delivery Time button.

6. You can add more delivery times by clicking on Add delivery time link and executing steps 2 to 3.

Add Categories

1. Now go to Catalog / Categories.

2. Click on the Add Category button.

3. Enter a name and a slug.

4. Click on the Add Category button.

5. Go to the Data tab.

6. Enter a Description. This will be displayed within the detail view of a category.

7. Click on the Save Data button.

8. Go to the View tab.

9. Select the Category Template, In this case Category with Products which means the assigned
products of the category will be displayed.

10. Click on the Save View button.

10 Chapter 4. Getting Started

django-lfs Documentation, Release dev

Add Products

1. Now go to Catalog / Products and click on the Add Product button.

2. Enter name and a slug.

3. Click on the Add Product button.

4. Go to the Data tab

5. Enter the SKU of the product. This is the unique id of the product - taken from your ERP for instance.

6. Enter the Price of the product.

7. Enter a Short Description. This will be displayed when the product is displayed within a overview, e.g.
when a category displays it’s assigned products.

8. Enter a Description. This will be displayed within the detail view of a product.

9. Click on the Save Data button.

10. Go to the Categories tab

11. Select the above entered category and click Save Categories.

12. Go to the Images tab

13. Click Choose Files, browse to your images and select all images you want to upload. You will see an
upload indicator and all images will be uploaded.

14. Go back to the Data tab

15. Check the Active check box. Only active products are displayed to the customers.

16. Click on the Save Data button.

17. Click on Goto Product to visit the new product.

Set Default Locale and Currency

Go to lfs_project/settings.py and change LFS_LOCALE to your needs (the default one is en_US.utf8).
This will activate the correct currency and number formats at the same time.

Usually there are several locale installed on your computer. In order to check which ones, please open a terminal and
type:

locale -a

To install an english locale (on Debian/Ubuntu) please enter:

sudo apt-get install language-support-en

Note: After you have changed the locale you need to restart your instance to make it active.

See also:

• http://en.wikipedia.org/wiki/Locale

• http://docs.python.org/library/locale.html

4.5. Add Products 11

http://en.wikipedia.org/wiki/Locale
http://docs.python.org/library/locale.html

django-lfs Documentation, Release dev

What’s Next?

• Add more categories and products.

• Add accessories to your products.

• Add related products to your products.

• Add variants.

• Manage taxes.

• Manage shipping methods.

• Manage payment methods.

• Manage delivery times.

• Manage stock information.

• Add some portlets to your shop and/or categories.

12 Chapter 4. Getting Started

CHAPTER 5

Information for Users

Concepts

Products

This section describes the different product types of LFS.

Overview

Products are the most essential content object of LFS. They are goods which are sold to customers. LFS’ products
manage a lot of data which are relevant for an online shop. Please see the product management interface reference to
see all available data fields in detail. LFS provides three types of products: default products, configurable products
and products with variants. They are described in more detail in the following sections.

Default Product

This is the simple and straightforward product of LFS. All other product types are based on the default product. It
handles a lot of information like:

• General descriptions

• Prices and price units

• Images

• Attachments

• Accessories

• Related products

• Stock data

• SEO Data

13

django-lfs Documentation, Release dev

• Portlets

• Properties

Each of this is described in more detail throughout this documentation.

Configurable Product

A configurable product is a product with several properties and options from which a customer can or needs to choose.
For instance a property Color and its options red, yellow and green. The selected options of the properties can
change the total price of the product, which is calculated by the base price plus the prices of the selected options.

See also:

• How To Add a Configurable Product

Product with Variants

A product with variants is a product from which the customer can choose out of an arbitrary amount of
similar variants. It consists out of two parts: the base and the variants.

Base

The base can’t be sold to customers, but it serves as a container for the variants and provides default data, which can
be inherited from the variants.

To create variants for a base global and local properties are used, e.g. the property Color and its options red,
yellow and green. Each variant of a base belongs to a unique combination of options of all properties of a base.

Variant

The variants can be sold to a customer. Each variant is a discrete product with its own data, e.g. own price, name and
SKU. By default the variants inherit all data from the base. This data can be overwritten per variant and field.

See also:

• How To Add a Product with Variants

See Also

• Product Management Interface

Categories

This section describes the concepts of categories.

14 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Overview

Categories are used to structure the products of the shop.

Every category can have either one or no parent category. In this way the category tree is built, which serves as the
essential navigation of the shop. If a category has no parent category, it is considered a top level category.

Every category can have an arbitrary amount of products and/or sub categories. What of these are displayed depends
on the selected template. How these are displayed depends on several format information of a category.

Each category can have several assigned portlets. By default the portlets are inherited from the parent category or
from the shop preferences (in case of top level categories). This can be blocked per slot.

In addition a static block can be assigned to a category, which is displayed on top of the category page.

Please see the description of the Category Management Interface in order to see more details of the information
categories provide.

See Also

• Category Management Interface

Manufacturers

This section describes the concepts of manufacturers.

Overview

Manufacturers are bound directly to the products that are sold at the shop.

Every manufacturer can have zero or more products assigned. Each product can have zero or one manufacturer.

There is a page that lists all the manufacturers defined in the system. In order to use it at your shop you have to add
new action pointing to /manufacturers url. From this page, users can dig deeper to see all the products from the
specific manufacturer.

Please see the description of the Manufacturers Management Interface in order to see more details of the information
manufacturers provide.

See Also

• Manufacturers Management Interface

Criteria

This section describes the concepts of criteria.

Overview

Criteria are a central concept of LFS and are used on several places in order to restrict or display information on base
of the current situation. For example: which products are in the cart or in which country are these products about to
be delivered. Criteria have a value and an operator, which are the base whether the criteria is true or false. This is
described in more detail in the section Criteria below.

5.1. Concepts 15

django-lfs Documentation, Release dev

Criteria are used within:

• Payment methods

• Payment method’s prices

• Shipping methods

• Shipping method’s prices

• Discounts

For example a shipping method is only available when all of its criteria are true.

Criteria

This paragraph describes the existing types of criteria and which operators they provide.

Cart Price

Description

Tests the gross price of all products within the cart (without costs for shipping, payment and so on).

Value

A number against the gross price of all products within the cart is tested.

Operators

Equal The criterion is true, if the gross price of the cart is equal to the entered value.

Less than The criterion is true, if the gross cart price is less than the entered value.

Less than equal to The criterion is true, if the gross cart price is less than or equal to the entered value.

Greater than The criterion is true, if the gross cart price is greater than the entered value.

Greater than equal to The criterion is true, if the gross cart price is greater than or equal to the entered value.

Payment Method

Description

Provides some tests for the payment methods of the shop.

Value

Any selection out of all provided payment methods.

16 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Operators

Is selected The criterion is true if the current selected payment method is within the selected payment methods.

Is not selected The criterion is true if the current selected payment method is not within the selected payment meth-
ods.

Is valid The criterion is true if all of the selected payment methods are valid.

Is not valid The criterion is true if all of the selected payment methods are not valid.

Shipping Method

Description

Provides some tests for the shipping methods of the shop.

Value

Any selection out of all provided shipping methods.

Operators

Is selected The criterion is true if the current selected shipping method is within the selected shipping methods.

Is not selected The criterion is true if the current selected shipping method is not within the selected shipping meth-
ods.

Is valid The criterion is true if all of the selected shipping methods are valid.

Is not valid The criterion is true if all of the selected shipping methods are not valid.

Country

Description

Tests the country of the customer’s shipping address.

Value

An arbitrary selection out of all existing countries.

Operators

Is The criterion is true, if the customer’s shipping country is within the selection of countries.

Is not The criterion is true, if the customer’s shipping country is not within the selection of countries.

5.1. Concepts 17

django-lfs Documentation, Release dev

Combined Length And Girth

Description

Tests the total combined length and girth (clag) of all products within the cart. The clag is calculated as following:

(2 * maximum width) + (2 * total height) + maximal length

Value

A number against the total combined length and girth of all products within the cart is tested.

Operators

Equal The criterion is true, if the total clag is equal to the entered value.

Less than The criterion is true, if the total clag is less than the entered value.

Less than equal to The criterion is true, if the total clag is less than equal to the entered value.

Greater than The criterion is true, if the total clag is greater than the entered value.

Greater than equal to The criterion is true, if the total clag is greater than equal to the entered value.

Height

Description

Tests the total height of all products within the cart.

Value

A number against the total height of all products within the cart is tested.

Operators

Equal The criterion is true, if the total height of all products within the cart is equal to the entered value.

Less than The criterion is true, if the total height of all products within the cart is less than the entered value.

Less than equal to The criterion is true, if the total height of all products within the cart is less than equal to the
entered value.

Greater than The criterion is true, if the total height of all products within the cart is greater than the entered value.

Greater than equal to The criterion is true, if the total height of all products within the cart is greater than equal to
the entered value.

18 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Length

Description

Tests the maximum length of all products within the cart.

Value

A number against the maximum length of all products within the cart is tested.

Operators

Equal The criterion is true, if the maximum length of all products within the cart is equal to the entered value.

Less than The criterion is true, if the maximum length of all products within the cart is less than the entered value.

Less than equal to The criterion is true, if the maximum length of all products within the cart is less than equal to
the entered value.

Greater than The criterion is true, if the maximum length of all products within the cart is greater than the entered
value.

Greater than equal to The criterion is true, if the maximum length of all products within the cart is greater than equal
to the entered value.

Weight

Description

Tests the total weight of all products within the cart.

Value

A number against the total weight of all products within the cart is tested.

Operators

Equal The criterion is true, if the total weight of all products within the cart is equal to the entered value.

Less than The criterion is true, if the total weight of all products within the cart is less than the entered value.

Less than equal to The criterion is true, if the total weight of all products within the cart is less than equal to the
entered value.

Greater than The criterion is true, if the total weight of all products within the cart is greater than the entered value.

Greater than equal to The criterion is true, if the total weight of all products within the cart is greater than equal to
the entered value.

5.1. Concepts 19

django-lfs Documentation, Release dev

Width

Description

Tests the maximum width of all products within the cart.

Value

A number against the maximum width of all products within the cart is tested.

Operators

Equal The criterion is true, if the maximum width of all products within the cart is equal to the entered value.

Less than The criterion is true, if the maximum width of all products within the cart is less than the entered value.

Less than equal to The criterion is true, if the maximum width of all products within the cart is less than equal to the
entered value.

Greater than The criterion is true, if the maximum width of all products within the cart is greater than the entered
value.

Greater than equal to The criterion is true, if the maximum width of all products within the cart is greater than equal
to the entered value.

Properties

This section describes the concepts of properties.

Overview

Generally, properties are used to extend products with miscellaneous data fields. Properties are attached to products
with the help of property groups.

In particular properties are used to create products with variants, configurable products and filters or just to display
generic information on a product. Additionally they can also be used to ask the shop customers to enter information
for a product which is about to be ordered.

Types

There are three types of properties, which are described in detail in the following sections.

Text Field

The property’s value are plain text without any logic behind it.

Float Field

The property value must be a float.

20 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Step Type

The step type is used for filtering. It can be chose from three different methods how the steps are created.

Automatic The filter steps are calculate automatically. The base are the entered values of all products of a category
for this property.

Fixed steps On base of the entered number LFS builds automatically all steps from the minimal to the maximum
value of all entered values on the products of a category for this property.

Manual steps All steps, which are supposed to be displayed are entered manually.

Validators

Validators are used to validate customer inputs into property fields.

Decimal places The amount of decimal places which are allowed.

Min The minimum value of the field.

Max The maximum value of the field.

Step The valid steps from minimum to maximum value.

Example

• Min: 1

• Max: 3

• Steps: 0.5

Valid values which a shop customer could input into this field are: 1, 1.5, 2, 2.5 and 3.

Select Field

The property is displayed as a select box.

Select Field Properties

Display Price If this is checked the price of the options is displayed beside the name within the select box.

Add Price The price of the selected option of the property is added to the total price of a Configurable Product.

Select Field Options

Every single option for a Select Field Property has to be entered. These have following information:

• Position

• Name

• Price (optional)

The options are ordered by position, lower numbers are displayed first. The names are displayed within several
selection fields. if Add Price is selected, the price is used to calculate the total price of a Configurable Product.

5.1. Concepts 21

django-lfs Documentation, Release dev

See Also

• Properties Management Interface

• Properties within the Product Management Interface

• How To Add a Product with Filters

• How To Add a Product with Variants

• Local properties

Local Properties

This section describes the concept of local properties.

Overview

Local properties are added to single products. They are a convenient way to create single variants for a product with
variants. In contrary to global properties they can not be used to create configurable products, create filters or to
display several informations on a product.

See Also

• Global Properties

• Product with Variants

• Configurable Products

Taxes

This section describes how LFS calculates taxes.

Note: If you don’t have different taxes based on customers you can safely ignore the rest of this section.

Overview

There are two types of taxes: product taxes and customer taxes.

Product taxes define the default tax for a product and are used to calculate the default net or gross price of a
product. Which one of these depends on the type of price you have entered for your product. Product taxes are are
assigned directly on the product.

Customer taxes define the tax for a specific customer respective for the country in which the goods are to be
delivered. These taxes are managed centrally and selected automatically by LFS for the calculation.

Calculating Taxes

Following we’ll explain how LFS calculates taxes.

22 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Example 1

Assuming that the entered price of a product is inclusive tax, i.e. the entered price is the gross price of the product or
in other words the selected Price calculator of the product is Price Includes Tax.

LFS will calculate the net price of the product on base of the entered Product tax, the tax you have assigned to the
product.

LFS will then calculate the product’s gross price for a customer on base of the customer tax which you have entered
for the country of the customer’s shipping address. If there is no customer tax for the customer LFS falls back to the
product tax in order to calculate the gross price.

Example 2

Now let’s imagine you have entered the price of the product exclusive tax, i.e. the net price of the product, or in other
words the selected Price calculator of the product is Price Excludes tax.

LFS will just take the entered price for the product and calculates the product’s gross price on base of the customer tax
which you have entered for the country of the customer’s shipping address. If there is no customer tax for the customer
LFS falls back to the product tax in order to calculate the gross price.

Conclusion

In both examples you see that the product tax is used when no customer tax is found. This means if you don’t have the
need for different taxes based on customers you can safely ignore them at all and just assign your default taxes directly
to the products.

See Also

• Manage product taxes

• Manage customer taxes

Static Blocks

This section describes the concept of static blocks.

Overview

A static block is a piece of information which are managed on a central place within LFS and can be reused from
several content objects like the front page, categories or products. It consists out of an arbitrary HTML text and an
arbitrary amount of attachments which can be provided for download.

An example is a description, image or video than should be displayed on several products or categories.

See Also

• Static Blocks Management Interface

5.1. Concepts 23

django-lfs Documentation, Release dev

Portlets

This section describes the concept of portlets in general and the default portlets in detail.

Overview

A Portlet is a piece of arbitrary information which can be assigned to every object, like shop, products, categories and
pages. They are displayed in slots. A slot can have an arbitrary amount of Portlets. LFS ships with a left and a right
slot and several default portlets. By default portlets are inherited from parent objects but it is also possible to block
parent portlets per slot.

The inheritance path for categories and products is:

shop > category > sub category > product

The inheritance path for pages is:

shop > page root > page

Default Portlets

This section describes all default portlets of LFS with their particular settings and properties.

Average Rating

This portlet displays the average rating of a product.

Title The title of the portlet.

Cart

This portlet displays the cart of the shop.

Title The title of the portlet.

Categories Portlet

This portlet displays the category tree, which is the essential navigation for the shop.

Title The title of the portlet.

Start Level The starting level of categories. If this is 2 the top level categories are not displayed within the portlet.
This can be useful if you want to display them in the horizontal menu.

Expand Level Expands the categories up to this level. If this is 0 only the current category will be expanded. If this
is 1 all top level categories are expanded, etc.

Note: top level categories have level 1, their sub categories have Level 2, etc.

24 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Delivery Time

This portlet displays the delivery time of a product.

Title The title of the portlet.

Featured Products

This portlet displays products, which are selected within Marketing / Featured

Title The title of the portlet.

Limit Only the given amount of products are displayed.

Use current category If this is checked only the featured product of the current category are displayed.

Slideshow If this is checked the products are displayed with a slideshow, i.e. a single product which is exchanged
automatically). If this is unchecked all products are display at once.

Filter

This portlet displays a filter portlet for a category.

Title The title of the portlet.

Show Product Filters: If this is checked product filters are displayed. To make this work properly the products
assigned to the category must filterable properties and there must be values assigned to them.

Show price filters: If this is checked price filters are displayed (which are automatically calculated).

For Sale

This portlet displays products which are for sale.

Title The title of the portlet.

Limit Only the given amount of products are displayed.

Use current category If this is checked only the featured product of the current category are displayed.

Slideshow If this is checked the products are displayed via a slideshow, i.e. only one product at once which is
exchanged automatically. If this is unchecked all products are display as a list.

Latest Products

Display the products that were recently added to the shop

Title The title of the portlet.

Limit Only the given amount of products are displayed.

Use current category If this is checked only the latest products of the current category are displayed.

Slideshow If this is checked the products are displayed with a slideshow, i.e. a single product which is exchanged
automatically). If this is unchecked all products are display at once.

5.1. Concepts 25

django-lfs Documentation, Release dev

Pages

This portlet displays information pages.

Title The title of the portlet.

Recent Products

Display the recent visited products.

Title The title of the portlet.

Related Products

This portlet displays related products of a product.

Title The title of the portlet.

Text

This portlet displays arbitrary HTML.

Title The title of the portlet.

Text The HTML code which is supposed to be displayed.

Top Seller

This portlet displays the top seller of the shop.

Title The title of the portlet.

Limit Only the given amount of products are displayed.

See Also

• Shop Preferences

• Categories Management Interface

• Products Management Interface

Actions

This section describes the concepts of actions.

Overview

Actions are used to place links on several locations within the shop. They belong to exactly one action group and the
action group decides the location the actions are displayed within the shop. LFS ships with two action groups, the
tabs, which constitutes the horizontal menu bar and the footer. Developers can easily add more action groups.

26 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Examples

Actions enables the shop owner to link to arbitrary categories, products, information pages or even external web sites.

See Also

• Actions Management Interface

• How to add own action groups

Delivery Times

This section describes the concepts of delivery times.

Overview

The delivery times of single products and the cart is calculated automatically by LFS. Delivery times are managed
centrally and are assigned to LFS’ shipping methods, that means they are generally dependent on the first valid or the
selected shipping method of a customer, if this is not explicitly overwritten for a product (see below).

Products

To get the delivery time for a single product (to display it within the product page), LFS calculates the first valid
shipping method for the product and the customer (all criteria are true) and takes its assigned delivery time. It’s also
possible to override this mechanism for single products with a manually delivery time.

Cart

To identify the delivery time for the total cart (to display it within the cart and the checkout page), LFS takes the
shipping method the customer has currently selected and calculates on base of that the maximum delivery time of all
products within the cart. The result can different from the selected shipping method as also in this case the manual
delivery times of products are taken into account. Additionally the default delivery time is used if the selected shipping
method for are product within the cart is not valid.

Miscellaneous

Additionally the internal delivery time (shop owner orders product) can be added to the delivery time for the customer.

See also

• Delivery Times Management

• Shipping Method Management Interface

• Product Management Interface - Stock Data

• Criteria concepts

5.1. Concepts 27

django-lfs Documentation, Release dev

Shipping Methods

This section describes the concept of shipping methods.

Overview

You can add as many shipping methods as you want.

All valid shipping methods are displayed for selection to the shop customer. A shipping method is valid if all criteria
of the shipping method are true.

Shipping methods can have many prices which are, as the payment method itself, also dependent on criteria. The first
price which is valid - all of its criteria are true - is the current price for the shipping method. If no price is valid the
default price is taken (from the Data tab).

Shipping methods have also a delivery time which decides how long the delivery will take if a certain shipping method
is selected by the customer.

See also

• Shipping Method Management Interface

• Delivery Time Concepts

• Criteria Concepts

Payment Methods

This section describes the concept of payment methods.

Overview

You can add as many payment methods as you want.

All valid payment methods are displayed for selection to the shop customer. A payment method is valid if all criteria
of the payment method are true.

Payment methods can have many prices which are, as the payment method itself, also dependent of criteria. The first
price which is valid - all of its criteria are true - is the current price for the payment method. If no price is valid the
default price is taken (from the Data tab).

See Also

• Payment Methods Management Interface

• How to add an own payment processor

• Criteria Concepts

Marketing

This section describes the marketing features of LFS.

28 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Accessories

Accessories are products which are supposed to be sold together with a product, like shingles to a summerhouse. They
are not bidirectional but they need to be entered on each product itself.

Accessories are displayed within the product view and could be added to the cart alongside with the product.
They are also displayed within the added to cart view (the view is displayed after a shop customer has added
a product to the cart) in order to offer them to be also added to the cart.

Discounts

Discounts are a possibility to give a price reduction to customers. They can be absolute or percentaged based on the
total cart price. Discounts can be restricted by criteria and they are only given if it meets all criteria. The shop owner
can add an arbitrary amount of discounts.

Featured Products

Featured products are several product which are supposed to be exposed to the customer for any reason. They are
management manually an can be displayed displayed to the customer via the featured product portlet.

Rating Mails

Shop owners can send rating mails to shop customers in order to ask them to rate the products they bought. See also
review concepts for more information.

Related Products

Related products are products which are somehow related to a product. They are not bidirectional related but they
need to be assigned to every single product.

Related products can be displayed within the Related Products Portlet.

Top seller

Top seller are best sold products of the shop. They are calculated automatically but can be also manipulated manually.
They are displayed within the top seller portlet

Vouchers

Vouchers are another possibility to give a price reduction for customers. The price reduction can be absolute or
percentaged based on the total cart price.

They are generic character strings which can be distributed to customers. If a valid voucher string is entered within
the cart or as part of the checkout process the customer gets the price reduction.

Vouchers can be limited by a start and an end date or a minimum cart price.

Vouchers expire when they have been used for a certain amount of times. A common way is to expire the voucher
right after it has been used the first time.

The shop owner can add an arbitrary amount of vouchers. They can be of the same or of different types.

5.1. Concepts 29

django-lfs Documentation, Release dev

See also

• Discounts Management Interface

• Products Management Interface

• Rating Mails Management Interface

• Review Concepts

• Vouchers Management Interface

Reviews

This section describes the reviews of LFS.

Overview

Shop customers can review the products.

A review consists of a score of 1-5 stars and an arbitrary text. The average rating for a product is calculated automati-
cally and displayed within the product view and the average rating portlet.

Logged in customers can review a product only once, anonymous customers just once in a session.

Shop administrators can influence the way reviews are handled, e.g. whether reviews are moderated or which fields
are required. See settings for more.

Shop owners can send rating mails to shop customers in order to ask them to rate the products thy bought.

See Also

• Settings

• Rating Mails

Page

This section describes the pages of LFS.

Overview

A page is a simple piece of HTML within the shop. It can be used to create landing pages or to display other
information to shop customers like terms and conditions.

Pages are automatically displayed within the pages portlet or can be referred by actions.

Like other objects pages can have portlets.

See Also

• Pages Management Interface

30 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Images

This section describes the concepts of images.

Overview

LFS provides two kinds of images: product images and global images.

Product images

Product images managed within the images tab of a product and are attached to a single product. They are displayed
automatically within the detail view of the product and the first image also within the category overview view.

Global images

Global images are managed on a central place and can be easily embedded within any WYSIWYG text field within
LFS (e.g. within a page).

To do that one just have to click on the image icon of the WYSIWYG editor (see below), select the image in question,
adapt the class and size of the image and click on the insert image button.

See also

• Global image management

• Product images management

Management Interface

Shop

This section describes the management interfaces of the Shop menu.

Actions

This section describes the management interface for actions.

Site Actions

Add Action Adds a new action.

Delete Action Deletes the currently displayed action.

View Shop This opens the front page of the shop in a pop-up window to quickly check the added actions without the
need to leave the management interface.

5.2. Management Interface 31

django-lfs Documentation, Release dev

Sort Actions In order to sort the actions, hold an action on the handle within the navigation on the left and drag and
drop it to the position you want it to be.

Data

Active Only active actions are displayed to the shop user.

Title The title of the action. It is displayed to the shop user.

Link The URL to which the shop user is pointed when he clicks on the action.

Group The group the action belongs to. Select Tabs to display the action on the horizontal menu or Footer to
display the action on the footer of the shop.

See also

• General about actions

• How to add own action groups

Delivery times

This section describes the management interface for delivery times.

Site Actions

Add Delivery Time Adds a new deliver time.

Delete Delivery Time Deletes the current displayed delivery time.

Data

Min The minimal delivery time.

Max The maximal delivery time.

Unit The unit of the delivery time, which is, hours, days, weeks or months.

Description A short description for internal uses only.

See also

• General about delivery times

• Shipping methods

• Product stock data

Manufacturers

This section describes the management interface for manufacturers.

32 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Site Actions

Add Manufacturer Adds a new manufacturer.

Delete Manufacturer Deletes the current displayed manufacturer.

View Manufacturer Opens the Manufacturer in a pop-up window to quickly check the appearance of the Manufac-
turer without leaving the LMI.

Goto Manufacturer Leaves the LMI and goes to manufacturer view.

Tabs

Data

Name The name of the manufacturer

Slug The unique last part of the manufacturer’s URL.

Short description The simplified description of the manufacturer. Displayed on the list of all manufacturers (/manu-
facturers).

Description The detailed description of the manufacturer. This is displayed on the detail view of the manufacturer.

Image Logo of the manufacturer.

View

Active formats If this check box is activated several formats for this manufacturer can be overwritten. Otherwise the
formats are inherited from the shop.

Product cols / Product rows Amount of columns and rows which are used to display the products of the manufac-
turer. The amount of products which are displayed calculates by cols * rows. If there are more products than
that the products are automatically paginated.

Note: This is only available if Active Formats is True.

SEO

This tab is used to optimize your pages for search engines. You can enter data for all meta data fields. However LFS
provides some reasonable default values for all fields.

Meta title This is displayed within the meta title tag of the manufacturer’s HTML tags. By default the name of the
manufacturer is used.

Meta keywords This is displayed within the meta keywords tag of the manufacturer’s HTML page. By default the
short description of the manufacturer is used.

Meta description This is displayed within the meta description tag of the manufacturer’s HTML page. By default
the short description of the manufacturer is used.

Note: You can use several placeholders within these fields:

<name> The name of the manufacturer.

5.2. Management Interface 33

django-lfs Documentation, Release dev

<short-description> The short description of the manufacturer (only within meta keywords and meta description
field).

Products

In order to assign products to the manufacturer, select the check boxes of the corresponding products within the section
Selectable Products and click on Add To Manufacturer.

Products Tree

Within this tab you can assign categories and products to the manufacturer.

To assign all products of a category to the manufacturer just check it. If you want just a sub category or single products
of it, click on the category to expand the children.

Payment Methods

This section describes the management interface of payment methods.

Site Actions

Add Payment Method This add a new payment method

Delete Payment Method This deletes the currently displayed payment method.

Note: Default payment methods can’t be deleted.

Tabs

Data

Name The name of the payment method, which is displayed to the shop customer (e.g. on the cart and the checkout
page).

Description A short description of the payment method, which is displayed to the customer (e.g. on the checkout
page).

Note A note of the payment method, which is displayed on the confirmation mail after the shop customer has been
checked out.

Priority The first valid payment method with the highest priority (smaller number) method is displayed to the cus-
tomer as default (if she hasn’t selected one explicitly).

Image An image for the payment method, which is displayed to the shop customer.

Tax The included tax of the payment method’s price

Price The default price of the payment method. This can be overwritten within the price tab (see below).

Module The dotted name of the external package which processes the payment (this is for developers only).

34 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Type The type of the payment method. Dependent on that additional fields for input (within the checkout process)
will be displayed. There are three types:

• Plain No additional fields are displayed.

• Bank Fields for a bank account are displayed.

• Credit Card Fields for a credit card are displayed.

Criteria

Here you can add criteria for the payment method. The payment method is only available for shop customers if all
criteria are true.

Please see How to manage payment methods to see how to add criteria.

Prices

Here you can add additional prices for the payment method based on criteria. If prices are given the first price which
meets all criteria is taken for the payment method. If no prices are given, the default price of the Data tab is taken.

Please see How to manage payment methods to see how to add prices.

See Also

• General about payment method

• How to manage payment methods

• General about criteria

Preferences

This section describes the preferences management interface.

Shop

General

Name The name of the shop. It will be used as prefix of all pages of the shop and is therefore very important for the
appearance within SERPs.

Shop owner The shop owner. This can be used on several places within the shop, e.g. within the thank-you page.

E-Mails

From e-mail address This e-mail address will be used as sender for all outgoing mails.

Notification email addresses This e-mail addresses will be used as receiver for all incoming mails.

5.2. Management Interface 35

django-lfs Documentation, Release dev

Google

Google Analytics ID The unique Google Analytics ID of the shop.

Google Analytics Site Tracking If checked the shop is tracked with Google Analytics.

Google Analytics E-Commerce Tracking If checked the shop is tracked with Google Analytics E-Commerce fea-
ture.

Checkout

Checkout type There are three checkout types:

Anonymous and Authenticated The customer can decide whether he registers and login to the shop or check-
out without registration.

Anonymous only Registration is not available

Anonymous only All customers have to register and login to the shop.

Confirm TOC If checked the customers have to confirm the terms of contract of the shop in order to checkout.

Content

Description The description of the shop. This is displayed within the front page of the shop.

Static block The static block is displayed on top of the front page of the shop. See Static Block for more.

Image The image of the shop.

Default Values

Price calculator

Price calculator The default price calculator of the shop. If a product doesn’t have an explicit price calculator this
one is used.

Delivery time

Delivery time The default delivery time, which is used if no delivery time can be calculated for a product.

Format

Product cols Default value for amount of displayed columns within a category if the category displays products.

Product rows Default value for amount of displayed rows within a category if the category displays products.

Category cols Default value for amount of displayed columns within a category if the category displays sub cate-
gories.

36 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Countries

Invoice countries Available countries within the invoice address.

Shipping countries Available countries within the shipping address.

Default shipping country The default shipping country within addresses. This country will be used to calculate
shipping price if the shop customer doesn’t have select a country yet.

Localization

Default shop locale This locale of the shop. This is used for localization of numbers and currencies, etc. You can
find more information here: http://en.wikipedia.org/wiki/Locale

Use international currency codes If checked the international currency code of the currency is used, e.g. USD or
EUR.

Order Numbers

Last order number This field stores the integer part of the last given order number, which is the base for the next
given order number.

Format This field stores the format of the order number. The integer part which is stored in Last order number
can be formatted with Python’s string formatting operators, e.g.:

DOE-%04d-2012 will return DOE-0001-2012

Whereas %04d represents the integer part of the order number, which is stored in Last order number.

SEO

This tab is used to optimize the start page for search engines. One can enter data for all usual HTML meta data fields.

Meta title This is displayed within the meta title tag of the start page. By default the Name field of the Shop
tab is used (see above).

Meta keywords This is displayed within the meta keywords tag of the start page.

Meta description This is displayed within the meta description tag of the start page.

Note: Following placeholder can be used within these fields:

<name> The name of the product.

Portlets

This tab is used to assign Portlets to the shop.

Slots Here you can see all directly assigned portlets to the shop. In order to edit a portlet click on row of the portlet. In
order to delete a portlet click on the red cross beside the portlet. You can also change the position of the portlets
by clicking on the up and down arrows beside the portlets.

Add new Portlet In order to add a portlet to the shop select the type of portlet and click on Add portlet.

5.2. Management Interface 37

http://en.wikipedia.org/wiki/Locale
http://docs.python.org/library/stdtypes.html#string-formatting-operations

django-lfs Documentation, Release dev

Shipping methods

This section describes the management interface of shipping methods.

Site Actions

Add Shipping Method Adds a new shipping method.

Delete Shipping Method Deletes the currently displayed shipping method

Tabs

Data

Name The name of the shipping method, which is displayed to the shop customer (e.g. on the cart and the checkout
page).

Description A short description of the shipping method, which is displayed to the customer (e.g. on the checkout
page).

Note A note of the shipping method, which is displayed on the confirmation mail after the shop customer has been
checked out.

Priority The first valid shipping method with the highest priority (smaller number) method is displayed to the cus-
tomer as default (if she hasn’t selected one explicitly).

Image An image for the shipping method, which is displayed to the shop customer (On the checkout page).

Tax The included tax of the shipping method’s price.

Price The default price of the shipping method. This can be overwritten within the price tab (see below).

Delivery time The delivery time of the shipping method. See Delivery times.

Criteria

Here you can add criteria for the shipping method. The shipping method is only available for shop customers if all
criteria are true.

Please see How to manage shipping methods to see how to add criteria.

Prices

Here you can add additional prices for the shipping method based on criteria. If prices are given the first price which
meets all criteria is taken for the shipping method. If no prices are given, the default price of the Data tab is taken.

Please see How to manage shipping methods to see how to add prices.

See also

• General about shipping methods

• How to manage shipping methods

• General about criteria

38 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Product Taxes

This section describes the management interface for product taxes.

Site Actions

Add Tax Adds a new product tax.

Delete Tax Deletes the current product tax.

Data

Rate The tax rate in percent.

Description A short description for internal uses only.

See also

• General about taxes

• Manage Customer Taxes

Customer Taxes

This section describes the management interface for customer taxes.

Site Actions

Add Customer Tax Adds a new customer tax.

Delete Customer Tax Deletes the currently displayed customer product tax.

Data

Rate The tax rate in percent.

Countries The countries for which the customer tax is valid.

Note: You can add just one tax rate per country.

See also

• Taxes in general

• Manage product taxes

5.2. Management Interface 39

django-lfs Documentation, Release dev

Images

This section describes the management interface for global images.

Data

Add images Click on the Select images button and select as many images as you want within your browsers
pop-up window. You can use shift click to select a range of images at once and ctrl (cmd for apple users) click to
select more images. Now click on open to start the upload process. You will now see a progress bar meanwhile
your images are being uploaded.

Delete Images To delete images select the check boxes above all images you want to delete and click the Delete
button. Alternative you can click on the Toggle selection button in order to inverse the current selection.

See also

• Images concept

Catalog

This section describes the management interfaces of the Catalog menu.

Categories

This section describes the category management interface.

Site Actions

Add Top Category Adds a category to the root of the catalog.

Add Category Adds a sub category to the current displayed category.

Delete Category Deletes the current displayed category.

View Category Opens the category in a pop-up window to quickly check the appearance of the category without
leaving the LMI.

Goto Category Leaves the LMI and goes to customer view of the current displayed category.

Move Categories

In order to move categories, hold it on the handle left beside the category name and drag and drop it to the new place.

Tabs

Data

Exclude from navigation If checked the category is not displayed within the categories portlet.

40 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Name The name of the category. This is displayed on several places, e.g: within category overviews and on top of
the category detail view.

Slug The unique last part of the category’s URL.

Description The detailed description of the category. This is displayed on the detail view of the category.

Image The image of the category. This can be displayed within category overviews and the category detail view.

Static block An optional static block which displayed on top of the category detail view.

View

Category template The selected template of the category decides whether the sub categories or the products are
displayed. It is also possible to provide more templates to display single categories individually.

Show all products

If this check box is activated also the products of the sub categories are displayed. Otherwise only the
direct products are displayed.

Note: This is only available when a the products of the category are displayed. (see Category Template).

Active formats If this check box is activated several formats for this category can be overwritten. Otherwise the
formats are inherited from the parent object, which is either the parent category or the shop.

Category cols Amount of columns which are used to display the sub categories. Always all direct categories of the
category are displayed.

Note: This is only available if active formats is True and a category template is selected.

Product cols / Product rows Amount of columns and rows which are used to display the products of the category.
The amount of products which are displayed calculates by cols * rows. If there are more products than that the
products are automatically paginated.

Note: This is only available if Active Formats is True and a product template is selected.

Products

This tab is used to assign and remove products to the category.

Add Products

In order to assign products to the category, select the check boxes of the corresponding products within the section
Selectable Products and click on Add To Category.

Remove Products

In order to remove products from the category, select the check boxes beside the corresponding products within the
section Selected Products and click on Remove From Category.

5.2. Management Interface 41

django-lfs Documentation, Release dev

Filter

In order to make it easier to find products you can filter them by name, SKU and category. For that enter on top of the
according section the name or the SKU into the text box and select the category out of the select box.

SEO

This tab is used to optimize your pages for search engines. You can enter data for all meta data fields. However LFS
provides some reasonable default values for all fields.

Meta title This is displayed within the meta title tag of the category’s HTML tags. By default the name of the category
is used.

Meta keywords This is displayed within the meta keywords tag of the category’s HTML page. By default the short
description of the category is used.

Meta description This is displayed within the meta description tag of the category’s HTML page. By default the
short description of the category is used.

Note: You can use several placeholders within these fields:

<name> The name of the category.

<short-description> The short description of the category (only within meta keywords and meta description field).

Portlets

This tab is used to assign portlets to the category.

Blocked parent slots By default portlets are inherited from the parent category. To block portlets check the regarding
slots and click on the Save blocked parent slots button.

Slots Here you can see all directly assigned portlets to the category. In order to edit a portlet click on row of the
portlet. In order to delete a portlet click on the red cross beside the portlet. You can also change the position of
the portlets by clicking on the up and down arrows beside the portlets.

Add new Portlet In order to add a portlet to the category select the type of portlet and click on Add portlet.

See also

• Categories in general

• Portlets in general

Products

This section describes the product management interface.

42 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Site Actions

Add product Adds a product to the catalog.

Delete product Deletes the current displayed product.

View product Opens the product in a pop-up window to quickly check the appearance of the product without leaving
the LMI.

Goto product Leaves the LMI and goes to customer view of the current displayed product.

Product type Select box to change the type of the product.

Tabs

Data

Active Only active products are displayed to the customer, can be found, bought etc.

Name The name of the product. This is displayed on the title of the product page, within overviews and as part of the
HTML meta title tag.

Slug The last part of the product’s URL. This must be unique.

Redirect to If the product is not active and this field is filled the user is redirected to the given URL. This might be
useful if your product has been indexed by search engines but is not available any more. Note: super users are
not redirected.

SKU Your unique product id.

Manufacturer Product manufacturer. If you have defined more than 20 manufacturers then this field is shown as
auto complete (start typing to see hints).

SKU manufacturer The unique product id of the manufacturer (external SKU).

Price The price of the product. Whether this price is considered net or gross dependents on the selected price calcu-
lator for a product (see below).

Price unit The price unit of the product. This is displayed after the price of the product within the product detail view
and the category products view.

Tax The tax rate of the product. Whether this is included or excluded dependents on the selected price calculator for
a product (see below).

Price Calculation

Warning: This is experimental feature. Use it with care and take notice that these could be replaced
with something different in future.

Note: This is only available for Configurable Products.

If the check box is checked the input field could contain a formula to calculate the price of a
Configurable Product. In this case one can refer to the values of a property in order to calcu-
late the price.

Generally the formula could contain any valid Python expression which is able to be evaluated with eval
with two additionally tokens.

5.2. Management Interface 43

django-lfs Documentation, Release dev

If an error, occurs the default price of the product is taken.

Available tokens:

product(<attribute>)
Refers to the attribute of the current product

property(<id>)
Refers to the value of the property with the given <id>

Example 1:

property(15) * product(price)

Which means: take the entered value of the property with the id 15 and multiply it with the product’s
price.

Example 2:

product(price) * property(54) * property(55) + property(56)

Which means: multiply the product’s price with the values of the properties with ids 54, 55 and add the
value of the property with the id 56.

Price calculator Determines how the product price is calculated using the product price and tax stored in the database.
If you leave this field blank, your pricing calculator will default to the shop price calculator.

LFS ships with two pricing calculator methods: Price Includes Tax, which means the product price
in the database includes tax and Price Excludes Tax, which means the product price in the database
excludes tax.

For sale If the check box is activated the entered for sale price is active. On all views the standard price is displayed
stroked and the for sale price is displayed emphasized.

For variants following is true:

Standard Inherits the for sale state of the base article.

Yes Variant is for sale.

No Variant is not for sale.

Quantity field unit This is displayed before the quantity field of the product within the product detail view and after
the product amount within cart and order items.

Type of quantity field There are three types of quantity fields: Integer, which means the quantity must be an
integer and all decimal places are ignored. Decimal 0.1, which means the quantity must be a decimal
number with one place and more decimal places are ignored. Decimal 0.01, which means the quantity must
be a decimal number with two places and more decimal places are ignored.

Active base price If this is activated the base price of the product is displayed within product detail view and category
products view.

For variants following is true:

Standard Inherits the activate base price from the base article. Values for base price unit and base
price amount are taken from the base article.

Yes Base price is activated. Values for base price unit and base price amount are taken from the
variant.

No Base price is deactivated.

Base price unit This unit is displayed after the base price of the product.

44 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Base price amount The amount, which is used to calculate the base price of the product. The base price of the
product is:

base price = price / base price amount

Short description A short description of the product. This is displayed within overviews like categories or the search
result page.

Description The detailed description of the product. This is displayed within the product page.

Static block An optional static block which displayed on top of the product view.

Product template The selected product template decides how the content of the product is structured.

Categories

Within this tab you can assign categories to the product. To do that just select all categories the product should be a
part of and click on Save Categories.

Note: You can also assign products to categories.

Images

Within this tab you can add images to the product.

Images are displayed on the details view of the product. The first image is the default image of the product and is also
displayed on overviews like the category detail view or search results view.

Add images Click on the Select images button and select as many images as you want within your browsers
pop-up window. You can use shift click to select a range of images at once and ctrl (cmd for apple users) click to
select more images. Now click on open to start the upload process. You will now see a progress bar meanwhile
your images are being uploaded.

Update images To update the images just change the Title and the position of all products you want to change and
click on the Update button.

Move images To move images just click on the up or down arrow beside the image.

Delete Images To delete images select the check boxes beside all images you want to delete and click the Delete
button.

Attachments

Within this tab you can add attachments to the product. They are displayed for download on the detail view of the
product.

Add Attachments Click on the Select files button and select as many attachments as you want within your
browsers pop-up window. You can use shift click to select a range of images at once and ctrl (cmd for apple
users) click to select more images. Click on select to start the upload process. You will now see a progress
indicator meanwhile your images are being uploaded.

Update attachments To update the images just change the Title and/or the position of all products you want to change
and click on the Update button.

Move attachments To move attachments you just click on the up or down arrows beside the attachment.

5.2. Management Interface 45

django-lfs Documentation, Release dev

Delete attachments To delete attachments select the check boxes beside all images you want to delete and click the
Delete button.

Variants

Within this tab you can manage the variants of a Product with Variants.

Note: This is only displayed for Products with Variants.

Property Groups

Select all property groups which are supposed to be used to create variants. After you have selected the property groups
you want, you will notice that the properties of the groups are provided to create variants within the Variants section
below.

Note: Only properties with select fields will be taken into account.

Local Properties

Local Properties can be used to create variants without using Property Groups. To add properties click
on the stencil and add properties and property options. After you add local properties you will note that these are
provided to create variants within the Variants section below.

Note: Local properties can not be used for filtering.

Variants

Within this section single variants of the Product with Variants are managed.

Add Variants To add variants to the Product with Variants, select the options combination you want to add
and click on the Add Variant(s) button. If you select all all combinations of this property and its options
will be created automatically.

You can pre-fill several fields of the new variants. All fields can be changed later.

Slug The slugs of the variants will be pre-filled with the slug of the base product, plus the slug you provide,
plus all options of the properties for which are selected for the variant.

Name The name of the variants will be pre-filled with the name you provide.

Price The price of the variants will be pre-filled with the price you provide.

Edit Variants There are several fields of the variants which you can edit directly on this section. All others can be
edit on the variant detail view.

Position The position of the variant within the list view.

Active If checked the variant is displayed.

URL The URL of the variant

46 Chapter 5. Information for Users

django-lfs Documentation, Release dev

SKU The SKU of th variant. This is only taken if the check box on the left is checked. Otherwise the SKU of
the base product is taken.

Name The name of th variant. This is only taken if the check box on the left is checked. Otherwise the name
of the base product is taken.

Price The price of th variant. This is only taken if the check box on the left is checked. Otherwise the price of
the base product is taken.

Default The default variant, which pre-selected when the product is displayed.

To save changed variants click on the Save button.

Delete Variants To delete variants select all check boxes of the variants you want to delete and click on the Delete
button.

Category Variant

The category variant determines which variant is displayed within the category products view.

Default Displays the above selected default variant

Cheapest Price Displays the variant with the cheapest price

Cheapest Base Price Displays the variant with the cheapest base price

Cheapest Prices Displays the variant with the cheapest price and cheapest base price

Explicit Variant Displays selected variant (all variants are provided for selection by name and position).

Display Type

The display type determines how variants are displayed within the product detail view

List All existing variants are displayed within a list.

Select All properties are displayed as select boxes with the property options as options.

Note: If the customer selects a combination, which doesn’t exist he will get a message which says so.

Accessories

Within this tab you can manage the accessories of a product.

Add accessories

Within the Selectable Products section select all check box beside the product you want to add as accessory
to the product and click on Add To Accessories.

Note: You can filter the selectable products by name and category with the input fields on top of the Selectable
Products section.

5.2. Management Interface 47

django-lfs Documentation, Release dev

Update accessories

Within the Selected Products section change the values you want and click on Save accessories.

Position The position within the product. Lower numbers are displayed first.

Quantity The entered quantity is displayed next to the accessory. The shop customer can only add the given quantity
to the cart.

Remove accessories

Within the Selected Products section select all check boxes beside the products you want to remove from the
product and click on Remove From Accessories.

Related products

Within this tab you can manage the related products of a product.

Add related products

Within the Selectable Products section select all check box beside the product you want to add as related
products to the product and click on Add To Related Products.

Note: You can filter the selectable products by name and category with the input fields on top of the Selectable
Products section.

Remove related products

Within the Selected Products section select all check boxes beside the products you want to remove from the
product and click on Remove From Related Prouducts.

Stock

Within this tab you can manage all stock related information of the product, like the dimension, stock amount and
delivery dates.

Dimension

The values of the product which are considered shipping relevant, i.e. the product within its package.

Weight The weight of the product.

Height The height of the product.

Width The width of the product.

Length The length of the product.

48 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Stock data

Deliverable If this is deactivated the product is not deliverable at all. The shop customer sees the product but he is
not able to add the product to the cart.

Manual delivery time By default the delivery time is calculated automatically by the currently valid shipping method
for a product. With this field the shop owner can overwrite this behavior and can put in a manual delivery time.

Manage stock amount If this is checked the stock amount will be decreased when the product has been bought.
Additionally the maximum amount which can be bought is the number in Stock amount (see below).

Stock amount The available amount of the product in stock.

Order time Duration from ordering the product to being in stock again (when it is out of stock).

Ordered at The date when the shop owner has ordered the product.

Note: If Order time and Order at is given the total delivery time is calculated based on this two fields
and the default Delivery time.

Packing

Active packing If this is checked the product can only be sold in packings.

For variants following is true:

Standard Inherits the packing state from the base article. Values for packing amount and packing
unit are taken from the base article.

Yes Packing is activated. Values for packing amount and packing unit are taken from the variant.

No Packing is deactivated.

Packing amount Amount of products per packing.

Packing unit: The unit of the packing. This is displayed after the packing amount.

SEO

This tab is used to optimize the product for search engines. One can enter data for all usual HTML meta data fields.
However LFS provides some reasonable default values for all fields.

Meta title This is displayed within the meta title tag of the product’s detail view. By default the name of the
product is used.

Meta keywords This is displayed within the meta keywords tag of the product’s detail view. By default the short
description of the product is used.

Meta description This is displayed within the meta description tag of the product’s detail view. By default
the short description of the product is used.

Note: Following placeholders can be used within these fields:

<name> The name of the product.

<short-description> The short description of the product (only within meta keywords and meta description field).

5.2. Management Interface 49

django-lfs Documentation, Release dev

Portlets

This tab is used to assign portlets to the product.

Blocked parent slots By default portlets are inherited from the current category. To block portlets check the regarding
slots and click on the Save blocked parent slots button.

Slots Here you can see all directly assigned portlets to the product. In order to edit a portlet click on row of the
portlet. In order to delete a portlet click on the red cross beside the portlet. You can also change the position of
the portlets by clicking on the up and down arrows beside the portlets.

Add new portlet In order to add a portlet to the product select the type of portlet and click on Add portlet.

Properties

This tab is used to assign properties to the product (via property groups) and add values to them.

To do that select the Property groups you want to assign to the product and click on Update property
groups. Then enter the values for the properties you want and click on Update properties.

Dependent on the kind of the property you can add values for the default value, the filter value and the displayed value.

See Also

• Products in general

• Portlets in general

• Properties in general

Products Overview

This section describes the products overview management interface.

Overview

Here you can bulk edit products.

Change Products

In order to delete products activate the check box on the left side of the products in question and click the Delete
button. In order to modify products make the changes in the product fields and click the Save button.

Warning: Deletions or modifications can’t be made undone.

Filtering

In order to display just a sub set of products you want to change you can use the filter section on top of the screen. A
product must join all filters in order to be displayed, in other words the filter fields are joined by a logical AND. To

50 Chapter 5. Information for Users

django-lfs Documentation, Release dev

set the filters click on the Submit button. To reset the filters click on the red button on the most right site of the filter
section.

Filter fields

Amount The amount of products which are displayed on one page. If there are more within the current filter settings
you can skim through it with the help of the page navigation on the left side of the filter area.

Name/SKU Filters the products by given name or SKU.

Category Filters the products by given category.

Active Filters the products by given activity state.

For Sale Filters the products by the for sale state.

Sub type Filters the displayed products by the entered sub type.

Properties

This section describes the management interfaces of the Properties menu.

Property Groups

This section describes the management interface for property groups.

Site Actions

Add Property Group Adds a new property group.

Delete Property Group Deletes the current displayed property group.

Warning: Please note that all values which have been assigned to products and properties of this property
group will get lost.

Tabs

Data

Name The unique name of the property group. This is used to assign property groups to products.

Properties

Within this tab you can manage properties for this property group.

Add Properties To add properties to the group select the check box beside the properties you want to add within the
Properties section on the left side and click on Add to Property Group.

Update Properties To change the position of properties enter the new position of the properties and click on Update
properties.

5.2. Management Interface 51

django-lfs Documentation, Release dev

Remove Properties To remove properties from the group select the check boxes beside the properties you want
to remove within the Selected properties section on the right side and click on Remove from
Property Group.

Warning: Please note that all values which have been assigned to products of this group and the removed
property will get lost.

Products

Within this tab you can assign products to the property group. All products will have the properties of this property
group.

Note: The selectable products can be filtered with the text field (name) and select box (categories).

Add Products To add products to the group select the check box beside the products you want to add within the
Products section on the left side and click on Add to Property Group.

Remove Products To remove products from the group select the check boxes beside the products you want to re-
move within the Selected products section on the right side and click on Remove from Property
Group.

Warning: Please note that all values which have been assigned to properties of this group and this product
will get lost.

Product values

In this tab you can assign values for every product / property pair within this group.

For that just enter the you want and click save values.

Note: You can also enter the values within the Properties tab of the product. See here for more.

See More

• Properties within Product Management Interface.

Properties

This section describes the management interface for properties.

Site Actions

Add Property Adds a new property.

52 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Delete Property Deletes the current displayed property.

Warning: Please note that all values which have been assigned to products for this property will get lost.

Data

Position The position within the product.

Name The unique name of the property. This is displayed within the management interface to select the property for
several purposes.

Title The title of the property. This is displayed to the shop customer.

For Variants: If this is checked the property will be used to create variants. Please be aware that only select fields
can be used to create variants.

Filterable If this is checked the property will be displayed for filtering (within the filter portlet).

Display on product If this is checked the property will be displayed on the product.

Configurable If this is checked the property will be displayed for selection/input on a configurable product

Required If this is checked the property must be selected/entered on a configurable product. This is only displayed if
Configurable is checked.

Unit The unit of the property, e.g. meter, liter or whatever you want. This is just a simple string without logic.

Field type The field type of the property. Based on the type of the field you need to provide additional data. See
Properties in general for more information.

See also

• Properties in general

• Property Groups Management Interface

HTML

This section describes the management interfaces of the HTML menu.

Pages

This section describes the management interfaces of pages.

Site Actions

Add Page Adds a new page.

Delete Page Deletes the currently displayed page.

View Page Opens the page in a pop-up window to quickly check the appearance of the page without leaving the LMI.

Goto Page Leaves the LMI and redirects to the customer view of the current displayed page.

5.2. Management Interface 53

django-lfs Documentation, Release dev

Sort Pages

In order to sort pages, take the handle on besides a page within the navigation on the left side and drag and drop it to
the position you want the page to be.

Root

This is the root of all pages. You can add portlets to it which are inherited from all other pages.

Tabs

Data

Title The title of the page. This is displayed on top of the page as well as within the meta title tag.

Slug The unique last part of the URL to the page.

Short text The short text of the page. This is displayed within overviews.

Text The main text of the page.

Active If this is checked the page is active. Only active pages are displayed to the shop users.

Position Pages are ordered by position. Lower numbers come first.

File A file which can be uploaded. If a file has been uploaded a download link is automatically displayed at the bottom
of the page.

SEO

This tab is used to optimize your pages for search engines. You can enter data for all usual HTML meta data fields.
However LFS provides some reasonable default values for all fields.

Meta title This is displayed within the meta title tag of the category’s HTML tags. By default the name of the product
is used.

Meta keywords This is displayed within the meta keywords tag of the category’s HTML page. By default the short
description of the category is used.

Meta description This is displayed within the meta description tag of the category’s HTML page. By default the
short description of the category is used.

Note: You can use several placeholders within these fields:

<name> The name of the page.

<short-description> The description of the page (only within meta keywords and meta description field).

Portlets

This tab is used to assign portlets to the page.

Blocked parent slots By default portlets are inherited from the current category. To block portlets check the regarding
slots and click on the Save blocked parent slots button.

54 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Slots Here you can see all directly assigned portlets to the page. In order to edit a portlet click on row of the portlet. In
order to delete a portlet click on the red cross beside the portlet. You can also change the position of the portlets
by clicking on the up and down arrows beside the portlets.

Add new Portlet In order to add a portlet to the page select the type of portlet and click on Add portlet.

See Also

• Pages in general

• Portlets in general

Static Block

This section describes the management interface of Static Blocks.

Site actions

Add Static Block Adds a Static Block to the shop.

Delete product Deletes the current displayed Static Block.

View Static Block Opens the current displayed Static Block in a pop-up window to quickly check the appearance of
the without leaving the LMI.

Tabs

Data

Name The name of the Static Block. The name is used to select a certain static block.

Display Files This must be checked in order to display the attached files.

HTML The HTML of the Static Block. This can be any valid HTML code.

Files

Within this tab you can add arbitrary files to the Static Block. These are provided for download if Display Files
is checked (see above).

Add files Click on the Select files button and select as many files as you want within your browsers pop-up
window. You can use shift click to select a range of files at once and ctrl (cmd for apple users) click to select
more files. Now click on open to start the upload process. You will now see a progress bar meanwhile your files
are being uploaded.

Update files To update the files just change the Title and/or the position of all filed you want to change and click on
the Update button.

Move files To move files just enter the position of every file and click on the Update button.

Delete files To delete files select the check boxes beside all files you want to delete and click the Delete button.

5.2. Management Interface 55

django-lfs Documentation, Release dev

See also

• Static Blocks

Customers

This section describes the management interfaces of the Customers menu.

Customers

Overview

Within the customers overview all customers are displayed.

Navigation / Filtering

With the page navigation you can navigate through all customers. To filter the displayed customers by name just fill
in the name field and click Submit. To reset the filter just click on the red X button.

Sorting

To sort the displayed customers click on the columns title.

Details

To view a customer in detail just click on the row of the customer.

Details

Within the customer detail view you can see several information about a single customer: the id and the registration
status, the current invoice address and shipping address, the current cart of the customer, if there is one. Click on the
cart row to see it in detail. You can also check which orders the customer has submitted and the state of the them.
Click on the order row to see it in detail.

56 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Navigation / Filtering

With the page navigation you can navigate through all customers. To filter the displayed customers by name just fill
in the name field and click Submit. To reset the filter just click on the red X button.

Orders

Overview

Within the orders overview all orders are displayed.

Navigation / Filtering

You can filter and navigate through the displayed orders:

5.2. Management Interface 57

django-lfs Documentation, Release dev

• With the page navigation you can navigate through all orders.

• To filter the orders by name just fill in the name field and click Submit.

• To filter the orders by state just select the state and click Submit.

• To filter the orders by date just fill in Start and End (YYYY-MM-DD) and click Submit. For convenience you
can click on the links left beside the start field. T = today, Y = yesterday, W = week.

• To reset the filter just click on the red X button.

Sorting

Note: Sorting is not available at the moment.

Details

• To view a order in detail just click on the order.

Details

Within the order detail view you can see several information about a single order:

• The general information: customer name, e-mail address and phone. The date, state and total amount of the
order.

• Shipping and invoice address of the customer. The shipping and payment method of this order.

• The order items.

• On the left you can see all other orders. Just click on an order to see it in detail.

58 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Navigation / Filtering

You can filter and navigate through the displayed orders on the left:

• With the page navigation you can navigate through all orders.

• To filter the orders by date just fill in Start and End (YYYY-MM-DD) and click Submit. For convenience you
can click on links beside the start field. T = today, Y = yesterday, W = week.

• To filter the orders by name just fill in the name field and click Submit.

• To filter the orders by state just select the state and click Submit.

• To reset the filter just click on the red X button.

Actions

Delete order To delete the current order just click on the Delete order button and answer the confirmation ques-
tion with Yes.

Resend order You can resend the current displayed order to the customer. To do that click on the Resend button
and answer the confirmation question with Yes.

Change state: To change the state of the current order select the desired state and click on the Change button.

Carts

Overview

Within the carts overview all carts are displayed.

5.2. Management Interface 59

django-lfs Documentation, Release dev

Navigation / Filtering

You can filter and navigate through the displayed carts:

• With the page navigation you can navigate through all carts.

• To filter the carts by date just fill in Start and End (YYYY-MM-DD) and click Submit. For convenience you
can click on the links left beside the start field. T = today, Y = yesterday, W = week.

• To reset the filter just click on the red X button.

Sorting

Note: Sorting is not available at the moment.

Details

• To view a cart in detail just click on the cart.

Details

Within the cart detail view you can see several information about a single cart:

• The general information: cart id, the customer (if there is one), creation and modification date, amount of items
and the total amount.

• The cart items.

• On the left you can see all carts. Just click on a cart to see it in detail.

60 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Navigation / Filtering

You can filter and navigate through the displayed carts on the left:

• With the page navigation you can navigate through all carts.

• To filter the carts by date just fill in Start and End (YYYY-MM-DD) and click Submit. For convenience you
can click on links beside the start field. T = today, Y = yesterday, W = week.

• To reset the filter just click on the red X button.

Reviews

Overview

Within the reviews overview all existing reviews are displayed.

Navigation / Filtering

You can filter and navigate through the displayed reviews:

• With the page navigation you can navigate through all customers.

• To filter the reviews by name just fill in the name field and click Submit.

• To filter the reviews by activity state just select the state and click Submit.

• To reset the filter just click on the red X button.

Sorting

• To sort the displayed reviews click on the columns title.

5.2. Management Interface 61

django-lfs Documentation, Release dev

Details

• To view a review in detail just click on it.

Details

Within the review detail view you can see several information about a single review:

• The general information: the id, activity state, creation date, reviewer’s name, reviewer’s e-mail, customer’s
registration state, the reviewed state, the score.

• The comment of the review

Navigation / Filtering

You can filter and navigate through the displayed reviews on the left:

• With the page navigation you can navigate through all customers.

• To filter the reviews by name just fill in the name field and click Submit.

• To filter the reviews by activity state just select the state and click Submit.

• To reset the filter just click on the red X button.

Actions

62 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Delete review To delete the current review just click on the Delete review button and answer the confirmation
question with Yes.

Change activity state: To change the activity state of the current review select the desired state and click on the
Change button.

Note: Only active reviews are displayed.

Marketing

This section describes the management interfaces of the Marketing menu.

Featured

This section describes the featured products management interface.

Navigation / Filtering

You can filter the available products within the Products section:

• Use the navigation link to navigate through the displayed products.

• To filter the products by name fill in the text box.

• To filter the products by category select the category from the select box.

Add featured products

To add featured products check the check boxes beside the products you want to add (within the Products section)
and click on Add to featured products.

5.2. Management Interface 63

django-lfs Documentation, Release dev

Update featured products

To update featured products change the entries in question and click on the Save featured button (see image
below).

Remove featured products

To remove featured products check the check boxes beside the products you want to remove (within the Featured
products section) and click on Remove from featured.

See also

Marketing Features

64 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Top seller

Navigation / Filtering

You can filter the available products within the Products section:

• Use the navigation link to navigate through the displayed products.

• To filter the products by name fill in the text box.

• To filter the products by category select the category from the select box.

Add top sellers

To add top sellers check the check boxes beside the products you want to add (within the Products section) and
click on Add to topseller.

Update top sellers

To update top sellers change the entries in question and click on the Save topseller button (see image below).

Remove top sellers

To remove top sellers check the check boxes beside the products you want to remove (within the Topseller section)
and click on Remove from topseller.

5.2. Management Interface 65

django-lfs Documentation, Release dev

See also

Marketing Features

Discounts

This section describes the management interface for discounts.

Site Actions

Add Discount Adds a new discount to the shop.

Delete Discount Deletes the currently display discount.

Data

Name The name of the discount, which is displayed as order item to the customer.

Value The value of the discount.

Type Absolute or percentaged. The type of the above entered value. If percentaged is selected the discount is based
on the total price of all products within the cart.

Tax The included tax of the discount (optional)

SKU: The unique id of the discount.

Sums up: Determine if discount can be summed up with other discounts/voucher. To calculate final discount on
order:

• value of discounts/voucher able to sum up is calculated

• value of highest discount/voucher that cannot be summed up is calculated

• higher of two above values is used

66 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Criteria

Within this tab you can assign criteria to the discount. The discount is only given if a customer meets all criteria.

See Also

• Criteria

Vouchers

This section describes the management interface for vouchers.

Site actions

Add Voucher Group Adds a new voucher group to the shop.

Delete Voucher Group Deletes the currently displayed voucher group.

Tabs

Data

Within the data tab you can change the name of the voucher group.

Name The name of the voucher group (this is just for internal usage).

Position Voucher groups are ordered by position, lower number comes first.

Vouchers

Within the vouchers tab you can manage the vouchers of the current voucher group.

Amount The amount of voucher which are supposed to be created.

Value The value of the voucher. This is either an absolute or an percentage value dependent on the type of the voucher
(see below).

Start/End: The range when the vouchers are valid.

Kind of: The type of the voucher. Either absolute or percentage.

Effective from: The minimum cart price from which the vouchers are valid. This is only the total cart item prices
without shipping and payment costs.

Tax The tax of the vouchers. If you don’t know the tax just let it empty.

Limit Determines how often the vouchers can be used.

Sums up Determine if Voucher can be summed up with discounts. To calculate final discount on order:

• value of discounts/voucher able to sum up is calculated

• value of highest discount/voucher that cannot be summed up is calculated

• higher of two above values is used

5.2. Management Interface 67

django-lfs Documentation, Release dev

Add Vouchers

In order to add vouchers, fill in the provided form and click on Add Vouchers.

Delete Vouchers

To delete vouchers check all voucher you want to delete and click on Delete Vouchers.

Options

Within the options tab you can change the options for voucher numbers.

Number prefix The prefix of the voucher number: PREFIX-xxxxx.

Number suffix The suffix of the voucher number: xxxxx-SUFFIX.

Number length The length of the voucher number.

Number letters The used letters to create a voucher number

Note: The current options are only effective for upcoming vouchers.

See Also

• Vouchers in General

Rating Mails

Here you can send your customers invitations to rate their bought products.

All customers with an order that is closed for at least 14 days will get a mail with links to a rating form to all bought
products of this order.

You can safely send the mails more than once, LFS will store all orders which have already got an e-mail and don’t
send the mail again.

In order to do that, just click on the Send Rating Mails button.

Options

Test The mails will get only to the shop notification e-mail addresses.

Send copy The mails will get to the customers and a copy of each mail is send to the notification e-mail addresses.

Utilities

This section describes the management interfaces of the Utils menu.

68 Chapter 5. Information for Users

django-lfs Documentation, Release dev

Miscellaneous

Overview

Here are some miscellaneous utilities for LFS. Actually you should never have to use theme.

Clear Cache

LFS provides an aggressive caching strategy for all content like categories and products (dependent on your environ-
ment). Actually LFS deletes out dating content automatically. However if you experience old content you can always
empty the cache manually.

Set Category Levels

LFS manages internal category levels. Here you can create them safely new if something went wrong. However, you
should never have to use this.

Export

Within this tab you can export selections of products.

Site Actions

Add Export Adds a new export.

Delete Export Deletes the currently displayed export.

Download Export Downloads the currently displayed export.

Tabs

Data

Name The name of the product selection. This is just for internal reasons.

Slug The unique part of the selection’s URL. This is used to call the selection from outside.

Script The script which is used to create the export. By default there is only the Generic script. Developers can
add more scripts.

Variants This defines how a product with variants is exported by default. This is either the default variant, the
cheapest variant or all variants.

Position The position of the selection within the management interface.

Products

Within this tab you can select which products are supposed to be exported.

To export whole categories just select the check box beside the category you want to export. If you want just a sub
category or single products of category, click on the category to expand the children.

5.2. Management Interface 69

django-lfs Documentation, Release dev

For every category you can overwrite the default settings which variant(s) of a product with variants will be
exported. This is either the default variant, the cheapest variant or all variants.

See Also

• How to create a export script

How-tos

How To Add a Horizontal Menu

Overview

In this how-to you will learn how to add a horizontal menu.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Overview

By default there is no automatically horizontal menu. You can add so-called actions to add one.

Step by Step

1. Go to Management / Shop / Actions.

2. Click on Add action.

3. Enter the Link for the action.

4. Select the Group Tabs.

5. Click on Add.

6. Now check the Active checkbox. Note: only active actions are displayed.

7. Repeat Steps 2. - 6. for every action.

Note: In order to sort action grab the handle on the left side of an action (six dots) and drag’n drop it to the new
position.

70 Chapter 5. Information for Users

http://demo.getlfs.com

django-lfs Documentation, Release dev

How To Add a Product with Variants

Overview

In this how-to you will learn how to add a product with variants.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Steps

1. Go to the LFS Management Interface.

2. Go to Catalog / Products.

3. Click on Add Product in order to add new product.

4. Enter the Name, and the Slug of the product and click on Add product.

5. Now you can enter further data as you would do for standard products for instance the price. Please note that this
are in case of a Product with Variants just default values, which can be overwritten for every single
variant later.

6. Change the product’s type from Standard to Product with Variants and click change. You will
notice that there is now a Variants tab.

7. Go to the Variants tab.

8. Click on the pencil left beside the Local Properties title in order to display the local properties add form.

9. Enter Color in the text field and click on Add Property.

Note: You can also use global properties to create variants, but this is beyond of these how-to.

10. Enter Red into the now provided option field and click on Add Option.

11. Repeat step 10 with Green and Blue.

Note: For convenience you can also add Red, Green, Blue to add all options at once.

12. Now go to the Variants section and select All below Color option. Click on Add Variants(s). This
will create all variants based on the option you have entered above.

13. Click on the pencil of a variant in order to open its edit form.

14. By default the data is inherited from the parent. In order to override a field activate it - check the check box
beside the field - and enter some information to it for instance for the price of a variant.

15. Repeat that for every variant you want to change.

16. Click on the Base Article site action in order to go back to the parent product.

17. Go to the Variants tab. You should be there automatically.

18. Check the Active check box. This will check the active check boxes of all variants and click on the Save
button.

5.3. How-tos 71

http://demo.getlfs.com

django-lfs Documentation, Release dev

19. Select the default variant by checking one of the radio boxes below the Default title. This variant is displayed
if the shop customer visits the Product with Variant.

20. Go to the Product tab.

21. Check the Active check box. This will activate the whole Product with Variants.

That’s it

Now click on Goto Product and you will see your newly created Product with variants. There is a
Variants section from which the customer can select the variants the product provides. All information of the
product (which has been overwritten by a variant) are automatically updated if the customer choose a variant.

What’s next

• Add more properties and options in order to create more complex variants.

• Use global properties in order to create variants.

• Check the difference between the both display types list and select.

See also

• Products Concept

• Properties Concept

How To Add a Configurable Product

Overview

In this how-to you will learn how to add a configurable product.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Steps

Add Properties

A configurable product is based on properties. So we need to enter them at first.

1. Go to the management interface.

2. Go to the Properties / Properties menu.

3. Click on the Add Property site action and enter the name of the property, for instance “Hard drive”. Then
click on the Add Property button.

4. Now check Configurable within the data form of the property and click on Save Property.

5. Change the Field Type to Select Field and click on Save Property Type.

6. Now add the options, for instance:

72 Chapter 5. Information for Users

http://demo.getlfs.com

django-lfs Documentation, Release dev

• Name: 250GB / Price: 50.0

• Name: 500GB / Price: 100.0

• Name: 750GB / Price: 150.0

7. Go to Properties / Property Groups

8. Click on the Add Property Group site action and enter the name of the property group, for instance “PC”.
Then click the Add Property Group button.

9. Go to the Properties tab, select the properties “Hard drive” and “RAM” and click on Assign
Properties.

Add the Product

10. Go to the management interface.

11. Go to Catalog / Products menu.

12. Click on Add product in order to add new product.

13. Enter the name and the slug and click on Add product.

14. Enter further data as you would do for standard products, like prices, descriptions and so on.

15. Change the product type from Standard to Configurable and click Change.

16. Go to the Properties tab.

17. Select the PC property group and click on Update Property Group.

18. Select the default values of the properties and click on Update Default Values. The default values will
be selected when a customer views the product.

That’s it

Now click on Goto Product and you will see that the product has a select box from which the customer can select
the options you provide above. The prices are automatically updated when the options are changed. If the customer
adds the product to the cart, the selected option is stored on the product.

What’s next

• Add more properties and options (see steps 3-7 on the Add Properties section above).

• Add a float field to the configurable product and see how the customer can be asked to enter a decimal number.

• Add a text field to the configurable product and see how the customer can be asked to enter a text.

See Also

• Product Concepts

• Property Concepts

5.3. How-tos 73

django-lfs Documentation, Release dev

How To Add a Product with Filters

Overview

In this how-to you will learn how to create a product with filters. At the end of it you will have added a property group
a property, a category with three products and a filter portlet.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Steps

First we will add the corresponding filter portlet:

1. Go to Management / Shop / Preferences.

2. Go to the “Portlets” tab.

3. Select Filter portlet and click Add portlet. Enter Filter in the Title field and click Save portlet.
You should now see the filter portlet within the Left slot section.

Now we will add properties, which are the base for the product filters.

4. Go to Management / Properties / Properties.

5. Add a new property by clicking Add property. (If there is no property. at all yet you will see the Add
property form automatically).

6. Enter the Name of the property, in our case Size and click Add property.

7. Go to Field type, select Select field and click Save property type.

8. Now go to Options and fill in the Name field. In our case Small. Click Add option.

9. Repeat step 8 for Middle and Large. Now you should see three options within property Size: Small, Middle and
Large.

74 Chapter 5. Information for Users

http://demo.getlfs.com

django-lfs Documentation, Release dev

Now we will add a property group.

Note: Every property has to belong exactly to one property group in order to use it with a product.

10. Got to Management / Properties / Property Groups.

11. Add a new property group by clicking the Add property group button. (If there is no property group at
all yet you will see the Add property group form automatically).

12. Enter the Name of the property, in our case T-Shirts and click Add property group.

Now assign the property to the property group:

13. Go to the “Properties” tab.

14. Select Size and click Assign properties.

You should now see Size within Assigned properties.

We will now add the Property group to some products.

15. Go to Management / Catalog / Products.

16. Add a new product clicking Add product. (If there is no product at all yet you will see the Add product”
form automatically).

17. Fill in Name T-Shirt One and Price 10.00 and click Add product.

No we assign values to the properties:

18. Go to the Properties tab of that product.

19. Select our Property group T-Shirts and click Update property groups You will now see the
Property Size.

20. Select Size Small.

5.3. How-tos 75

django-lfs Documentation, Release dev

21. Repeat Steps 16 - 20 for T-Shirt Two and T-Shirt Three and assign sizes Middle and Large and prices 100.00
and 1000.00. Now you should have three products T-Shirt One, T-Shirt Two and T-Shirt Three with sizes Small,
Middle and Large and prices 10.00, 100.00 and 1000.00.

We need to make the products active:

22. Go to Management / Catalog / Products Overview.

23. Select Active for all products and click Save.

Now we add a new category T-Shirts:

Note: Filtering takes place on products of a category, hence we add a category for our newly products.

24. Go to Management / Catalog / Categories.

25. Add a new category by clicking “Add category”. (If there is no category at all yet you will see the “Add category”
form automatically).

26. Fill in the Name: T-Shirts and click Add category.

Now we assign the products to the category:

27. Go to the products tab of that category.

28. Select the products T-Shirt One, T-Shirt Two, T-Shirt Three and click Add to category.

Now we are ready to preview our new content:

29. Click on the Preview button. You should now see the filter portlet with the ability to select the sizes Small,
Middle and Large and prices 0 - 500.00 and 501.00 - 1000.00.

76 Chapter 5. Information for Users

django-lfs Documentation, Release dev

What’s next?

• Add some more properties to the property group T-Shirts.

• Add the property group T-Shirts to more products.

• Assign products and values via Property Groups:

1. Go to Properties / Properties Groups

2. Select T-Shirts

3. Go to Products tab

4. Go to Values tab

• Check out the other options of the properties, e.g. the Field type or the Unit field.

• Check out creating variants on base of properties and see how filters work with variants too.

How To Manage Payment Methods

Overview

In this how-to you will learn how to add and edit payment methods and how to add criteria and prices for them.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Get started

In order to add/edit a payment method please go to Management / Shop / Payment Methods.

5.3. How-tos 77

http://demo.getlfs.com

django-lfs Documentation, Release dev

If there are no payment methods yet, you will automatically get to the add payment method form. Otherwise the first
payment method is displayed and you can click on a payment method to edit this or on Add payment method to
add a new one.

If you have done that you can edit or enter the data for a payment method as described below.

Data

The data tab contains all core data for the payment method.

Now fill in the fields:

• Name: The name of the payment method, which is displayed to the shop customer.

• Description: A short description of the payment method, which is also displayed to the customer.

• Note: A note of the payment method, which is displayed on the confirmation mail after the shop customer has
been checked out.

• Priority: The first valid payment method with the highest priority (smaller number) method is displayed to the
customer.

• Image: An image for the payment method, which is displayed to the shop customer.

• Tax: The included tax of the payment method’s price.

• Price: The default price of the payment method. This can be overwritten within the price tab (see below).

78 Chapter 5. Information for Users

django-lfs Documentation, Release dev

• Module: The dotted name of the external package which processes the payment (this is for developers only).

• Type: The type of the payment method. Dependent on that additional fields for input (within the checkout
process) will be displayed. There are three types at the moment:

– Plain No additional fields are displayed.

– Bank Fields for a bank account are displayed.

– Credit Card Fields for a credit card are displayed.

And click on the Save-button.

Criteria

Optional you can add some criteria to the payment method. Only when all criteria are true the payment method is
displayed to the shop customer.

To add criterion proceed as following:

• Click on the Add criteria-button (adds a criterion on first position) or on the plus button beside a criterion
(adds a criterion below)

• Select the criteria type you want, e.g. Weight (this is the weight of all cart items).

• Select the operator, e.g. Less than equal to.

• Enter the value, e.g. 50.

• Altogether this means the payment method is valid if the weight of all cart items is less than or equal to 50 units.

• You can add as many criteria you want.

• Click on Save criteria.

To update criteria proceed as following:

• Change the values of the criteria to your needs.

• Click on Save criteria

To delete a criterion proceed as following:

• Click on the minus button beside the criterion.

• Click on Save criteria.

5.3. How-tos 79

django-lfs Documentation, Release dev

Prices

Optional you can add additional prices to the payment method and restrict them with criteria. The first price which
meets all criteria will be taken.

To add a price proceed as following:

• To manage prices go to the Prices tab.

• To add a new price enter the value into the text field and click Add price.

• To add/edit criteria for that price click on Edit criteria link. A pop-up window will open.

• Click on Add criteria and change the criteria type, the operator and the value to your needs.

To update/delete a price proceed as following:

• To update the prices change the priority and/or the value of the price and click on Update prices.

• To delete the prices select the check boxes of the prices you want delete and click on Delete prices.

See also

• Manage payment methods

How To Manage Shipping Methods

Overview

In this how-to you will learn how to add and edit shipping methods and how to add criteria and prices for them.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

80 Chapter 5. Information for Users

http://demo.getlfs.com

django-lfs Documentation, Release dev

Get Started

In order to add/edit a shipping method please go to Management / Shop / Shipping Methods.

If there are no shipping methods yet, you will automatically get to the add shipping method form. Otherwise the first
shipping method is displayed and you can click on a shipping method to edit this or on Add shipping method
to add a new one.

If you have done that you can edit or enter the data for a shipping method as described below.

Data

The data tab contains all core data for the shipping method.

5.3. How-tos 81

django-lfs Documentation, Release dev

• Now fill in the fields:

– Name: The name of the shipping method, which is displayed to the shop customer.

– Description: A short description of the shipping method, which is also displayed to the customer.

– Note: A note of the shipping method, which is displayed on the confirmation mail after the shop customer
has been checked out.

– Priority: The first valid shipping method with the highest priority (smaller number) method is displayed
to the customer.

– Image: An image for the shipping method, which is displayed to the shop customer.

– Tax: The included tax of the shipping method’s price.

– Price: The default price of the shipping method. This can be overwritten within the price tab (see below).

• Click on Save-button

Criteria

Optional you can add some criteria to the shipping method. Only when all criteria are true the shipping method is
displayed to the shop customer.

82 Chapter 5. Information for Users

django-lfs Documentation, Release dev

To add criterion proceed as following:

• Click on the Add criteria-button (adds a criterion on first position) or on the plus button beside a criterion
(adds a criterion below)

• Select the criteria type you want, e.g. Weight (this is the weight of all cart items).

• Select the operator, e.g. Less than equal to.

• Enter the value, e.g. 50.

• Altogether this means the shipping method is valid if the weight of all cart items is less than or equal to 50 units.

• You can add as many criteria you want.

• Click on Save criteria.

To update criteria proceed as following:

• Change the values of the criteria to your needs.

• Click on Save criteria

To delete a criterion proceed as following:

• Click on the minus button beside the criterion.

• Click on Save criteria.

Prices

Optional you can add additional prices to the shipping method and restrict them with criteria. The first price which
meets all criteria will be taken.

To add a price proceed as following:

• To manage prices go to the Prices tab.

• To add a new price enter the value into the text field and click Add price.

• To add/edit criteria for that price click on Edit criteria link. A pop-up window will open.

• Click on Add criteria and change the criteria type, the operator and the value to your needs.

To update/delete a price proceed as following:

5.3. How-tos 83

django-lfs Documentation, Release dev

• to update the prices change the priority and/or the value of the price and click on Update prices.

• To delete the prices select the check boxes of the prices you want delete and click on Delete prices.

See Also

• Manage shipping methods

How To Setup Paypal

Overview

In this how-to you will learn how to setup paypal for your shop

Steps

1. Setup a paypal developer account at https://developer.paypal.com/

2. Add a pre-configured test Buyer https://developer.paypal.com/cgi-bin/devscr?cmd=_sandbox-acct-session

3. Add a pre-configured test Seller https://developer.paypal.com/cgi-bin/devscr?cmd=_sandbox-acct-session

4. Launch the sandbox account for the Seller from https://developer.paypal.com/cgi-bin/devscr?cmd=
_sandbox-acct-session

5. Set up IPN

• Click on “Profile” - “Instant Payment Notification Preferences”

• Set the Notification URL to http://www.yourdomainname.com/paypal/ipn/

• Turn IPN On

6. Set up PDT

• Click on “Profile” - “Website Payment Preferences”

• Turn on “Auto Return”

• Set the “Return URL” to http://www.yourdomainname.com/paypal/pdt/

• Set “Payment Data Transfer” to On, this will create an Identity Token for us.

7. Copy our seller information to settings.py e.g.:

PAYPAL_RECEIVER_EMAIL = "seller_1262786866_biz@yourdomainname.com"
PAYPAL_IDENTITY_TOKEN = "j0Iw3M4l6znE45kWkyQs43PkwC9bkaceteiWXfddg5q_
→˓CW1Ev4HGuqVPPfBG"

8. Deploy your site to a live internet site for testing (Paypal servers must be able to see your site).

9. When you are finished testing your site and ready to go live, set up a live Paypal Business account (Website
Payments Standard account has been reported to work) and repeat steps 5-8

84 Chapter 5. Information for Users

https://developer.paypal.com/
https://developer.paypal.com/cgi-bin/devscr?cmd=_sandbox-acct-session
https://developer.paypal.com/cgi-bin/devscr?cmd=_sandbox-acct-session
https://developer.paypal.com/cgi-bin/devscr?cmd=_sandbox-acct-session
https://developer.paypal.com/cgi-bin/devscr?cmd=_sandbox-acct-session
http://www.yourdomainname.com/paypal/ipn/
http://www.yourdomainname.com/paypal/pdt/

django-lfs Documentation, Release dev

How To Add a Export Script

Overview

LFS provides a generic export engine for products (see here for more). In this tutorial you will learn how to create
your own scripts to format the data like you want to.

Note: If you don’t have a working LFS instance yet, you can just use our demo shop at http://demo.getlfs.com. Please
be aware that we reset the database every two hours.

Steps

In order to create a new export script you should first create a new Django application (or use an existing one). This is
beyond this tutorial. If you do not know how to do this, please refer to the excellent Django tutorial.

Within the __init__.py of your application create a function that will return the products, like so:

1 # python imports
2 import csv
3

4 # django imports
5 from django.http import HttpResponse
6 from django.core.mail import send_mail
7

8 # lfs imports
9 from lfs.export.utils import register

10

11 def export(request, export):
12 """Export method for acme.com
13 """
14 response = HttpResponse(mimetype="text/csv")
15 response["Content-Disposition"] = "attachment; filename=acme.txt"
16

17 writer = csv.writer(response, delimiter=";", quotechar='"', quoting=csv.QUOTE_ALL)
18

19 for product in export.get_products():
20 writer.writerow(product.id, product.get_name())
21

22 return response
23

24 register(export, "acme.com")

The code explained

1-6 Some simple Python and Django imports. These may vary for your code.

9 Imports the register method to register your script.

11 The function which will contain your code to create the exported data.

14/15 We decided to give a response with a download back. Your code may vary here.

16 We decided to use Python csv modules. You code may vary here.

19 All selected products can be get with the get_products method of the passed export object.

24 The registration of your function. This line must be called while Django is starting up.

5.3. How-tos 85

http://demo.getlfs.com
http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

Getting ready

Now you can go the management interface, create a new export, select the products and your newly script and call it
via the Export button.

You might want to create a cron job which calls your script regularly. (See here for more)

How To Use Celery

Overview

Celery is a distributed task queue that can be used to send e-mails from LFS asynchronously.

There is no special integration in LFS for Celery but there are general patterns for Django based projects that can be
used to get asynchronous e-mail backend.

Dependencies

You need:

• celery

• django-celery-email

as well as some Celery backend, eg Redis. Consult Celery documentation for details.

Installation

Follow the Celery’s first steps with Django and django-celery-email documentation.

86 Chapter 5. Information for Users

http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://pypi.python.org/pypi/django-celery-email
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://pypi.python.org/pypi/django-celery-email

CHAPTER 6

Information for Developers

Developing

Developing LFS

This section describes how to develop LFS.

Warning: This is only for development. Don’t use this version in production. We might break the head, add stuff
which need database migrations or introduce some security issues, etc.

Creating a Development Environment

There is an installer based on zc.buildout, which should make the installation straightforward:

1. $ git clone https://github.com/diefenbach/lfs-buildout-development.git

2. $ cd lfs-buildout-development

3. $ python bootstrap.py

4. $ bin/buildout -v

5. $ bin/django syncdb

6. $ bin/django migrate

7. $ bin/django lfs_init

8. $ bin/django test lfs.core

9. $ bin/django runserver

10. Browse to http://localhost:8000

87

http://www.buildout.org/
https://github.com/diefenbach/lfs-buildout-development.git
http://localhost:8000

django-lfs Documentation, Release dev

Note: You might want to fork LFS on GitHub and point to it within buildout.cfg first.

Contributing Code to the Core

If you consider to contribute code to LFS, please read the following statements first:

1. First of all, you are very welcome!

2. Generally, it would be great if you would discuss new stuff first. We are very reluctant to add new things. Every
new feature should have a real live use case. Find us on IRC or the LFS Google Group.

3. Fork LFS GitHub and send us pull requests.

4. Please make sure that you just add related code to your fork. This makes it easier to review and pull your code.

5. The code must be put under a permissive free software licenses like BSD, otherwise we can’t add it. For instance,
code under the GPL or a other copyleft software licenses won’t be added to the core.

6. Python code must follow PEP 8. The maximum of 79 characters per line is the only exception. You may want
to check your code with pep8. The following statement should run without complaints:

$ pep8 --repeat --ignore=E501 /path/to/lfs

7. Every new feature must have unit tests and documentation.

8. All tests must pass. Please check this with:

$ bin/django test lfs.core

9. New features shouldn’t make LFS slower. Please see Benchmarking LFS.

10. Add yourself to CREDITS.txt.

Contributing Translations

Please refer to Contributing translations.

Testing LFS

This section describes how to test LFS.

Overview

Testing is based on nose and django-nose.

Examples

Test everything:

$ bin/django test lfs.core

Test everything with coverage (you’ll find the coverage report in the current directory):

88 Chapter 6. Information for Developers

https://github.com/diefenbach/django-lfs
http://groups.google.com/group/django-lfs
https://github.com/diefenbach/django-lfs
http://en.wikipedia.org/wiki/BSD_licenses
http://en.wikipedia.org/wiki/copyleft
http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pep8/
https://github.com/diefenbach/django-lfs/blob/master/CREDITS.txt
http://readthedocs.org/docs/nose/en/latest/
http://pypi.python.org/pypi/django-nose

django-lfs Documentation, Release dev

$ bin/django test lfs.core --with-coverage --cover-package=lfs --cover-html

Test only the catalog:

$ bin/django test lfs.catalog

Test only the catalog with coverage (you’ll find the coverage report in the current directory):

$ bin/django test lfs.catalog --with-coverage --cover-package=lfs.catalog --cover-html

Test only one method without capturing the output (this is helpful if you want to debug a test with pdb):

$ bin/django test lfs.catalog.tests:ViewsTestCase.test_file -s

See also

• nose

• nose options

• django-nose

Benchmarking LFS

This section describes how to benchmark LFS.

Overview

The development buildout comes with lfs_bench, a small application, which provides some tools to benchmark
LFS.

You can use it in case you want to optimize LFS in terms of speed. In case you want to development a new feature,
please compare the versions with and without this feature and try to not slow down LFS.

JMeter

1. Install JMeter

2. Prepare the database:

$ bin/django lfs_init
$ bin/django lfs_generate_content_for_benchmark

3. Start LFS

• Start LFS in production mode, for instance with bin/django-gunicorn. and a reverse proxy in front of it.
In other words don’t use the development server.

• Set DEBUG to False

4. Start JMeter

Make sure you start it from the buildout base directory (that’s the same directory you start Django from):

6.1. Developing 89

http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/usage.html#options
http://pypi.python.org/pypi/django-nose
http://jmeter.apache.org/

django-lfs Documentation, Release dev

$ /path/to/jmeter/bin/jmeter -t src/lfs_bench/lfs_bench/jmeter/lfs.jmx -p
→˓src/lfs_bench/lfs_bench/jmeter/user.properties

5. Execute the Testplan and check the result within Summary Report for instance.

Apache Benchmark - ab

1. Prepare the database:

$ bin/django lfs_init
$ bin/django lfs_generate_content_for_benchmark

2. Start LFS

• Start LFS in production mode, for instance with bin/django-gunicorn. and a reverse proxy in front of it.
In other words don’t use the development server.

• Set DEBUG to False

3. Use ab, for instance like that:

$ ab -n 1000 -c 20 http://localhost/product-1-1-1

4. Check the results.

Python Profiling

The development buildout provides a middleware by default, which let you profile single requests. Just suffix the
request with ?prof in order to get profiling data, for instance:

http://localhost/product-1-1-1?prof

See also:

• JMeter

• Apache Benchmark - ab

• Python stats reference

Changing models

This section describes how to modify and create new models in LFS

Overview

Since version 0.8 LFS uses South migrations so you’re encouraged to read South documentation first. If you need to
modify models layer of LFS then you should use ‘shemamigration’ command. If you have to migrate data then you
should use ‘datamigration’ command. See examples below.

Note: Do not forget to commit migrations into repository! They’re created in migrations/ directory of the application
they’re crated for

90 Chapter 6. Information for Developers

http://jmeter.apache.org/
http://httpd.apache.org/docs/2.0/programs/ab.html
http://docs.python.org/library/profile.html#module-pstats
http://south.aeracode.org/

django-lfs Documentation, Release dev

Examples

New field added to the model, or modified existing field in lfs.customer:

$ bin/django schemamigration lfs.customer --auto

New model added to lfs.catalog:

$ bin/django schemamigration lfs.customer --auto

Execute migration that was just created with ‘schemamigration’:

$ bin/django schemamigration lfs.customer --auto
$ bin/django migrate lfs.customer

Correct migration instead of creating new one, eg. if you’ve created a migration and then realized that your model still
has to be corrected (see more here):

$bin/django schemamigration lfs.customer --auto --update

Contributing translations

There are two preferred ways to contribute translations:

Via DVCS

If your are a (Django-)developer you might want to fork django-lfs and lfs-theme on GitHub add the translations as
used to, commit them and send us a pull request.

Note: Please make sure to fork the correct version branch.

Via Transifex

If your are a translator you can just go to transifex, choose or add the language of your choice and start to translate via
the web interface. Once you are ready we would add your translations to the source code.

Note: Please make sure to use the correct version.

Other

If none of these fit your workflow you can of course just send us the translation files.

See also

• LFS on Transifex

• How to create language files in Django

6.1. Developing 91

http://south.readthedocs.org/en/latest/tutorial/part3.html?highlight=update
https://github.com/diefenbach
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#localization-how-to-create-language-files
https://www.transifex.net/projects/p/lfs/
https://www.transifex.net/projects/p/lfs/
https://docs.djangoproject.com/en/dev/topics/i18n/translation/#localization-how-to-create-language-files

django-lfs Documentation, Release dev

Miscellaneous

API

Plug-ins

Criterion

class lfs.criteria.models.Criterion
Base class for all criteria.

Attributes:

cart The current cart of the current customer.

content The content object the criterion belongs to.

operator The current selected operator for the criterion.

position The position of the criterion within a list of criteria of the content object.

product The product, if the criterion is called from a product detail view. Otherwise this is None.

request The current request.

Constants:

EQUAL, LESS_THAN, LESS_THAN_EQUAL, GREATER_THAN, GREATER_THAN_EQUAL, IS_SELECTED, IS_NOT_SELECTED, IS_VALID, IS_NOT_VALID, CONTAINS
Integers which represents certain operators.

INPUT, SELECT, MULTIPLE_SELECT Constants which represents the types of selectable values. One of
these must be returned from get_value_type.

NUMBER_OPERATORS A list of operators which can be returned from get_operators.

[
[EQUAL, _(u"Equal to")],
[LESS_THAN, _(u"Less than")],
[LESS_THAN_EQUAL, _(u"Less than equal to")],
[GREATER_THAN, _(u"Greater than")],
[GREATER_THAN_EQUAL, _(u"Greater than equal to")],

]

SELECTION_OPERATORS A list of operators which can be returned from get_operators.

[
[IS_SELECTED, _(u"Is selected")],
[IS_NOT_SELECTED, _(u"Is not selected")],

]

VALID_OPERATORS A list of operators which can be returned from get_operators.

[
[IS_VALID, _(u"Is valid")],
[IS_NOT_VALID, _(u"Is not valid")],

]

STRING_OPERATORS A list of operators which can be return from get_operators.

92 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

[
[EQUAL, _(u"Equal to")],
[CONTAINS, _(u"Contains")],

]

get_operators()
Returns the selectable operators of the criterion which are displayed to the shop manager. This is a list of
list, whereas the the first value is integer, which is stored within the criterion and the second value is the
string which is displayed to the shop manager, e.g.:

[
[0, _(u"Equal to")],
[1, _(u"Less than")],
[2, _(u"Less than equal to")],
[3, _(u"Greater than")],
[4, _(u"Greater than equal to")],

]

Note: You can use one of the provided class attributes, see above.

•NUMBER_OPERATORS

•SELECTION_OPERATORS

•VALID_OPERATORS

•STRING_OPERATORS

get_selectable_values(request)
Returns the selectable values as a list of dictionary, see below. This is only called when
get_value_type returns SELECT or MULTIPLE_SELECT.

[
{

"id": 0,
"name": "Name 0",
"selected": False,

},
{

"id": 1,
"name": "Name 1",
"selected": True,

},
]

get_template(request)
Returns the template to render the criterion.

get_value_type()
Returns the type of the selectable values field. Must return one of:

•self.INPUT

•self.SELECT

•self.MULTIPLE_SELECT

get_value()
Returns the current value of the criterion.

6.2. Miscellaneous 93

django-lfs Documentation, Release dev

is_valid(request, product=None)
Returns True if the criterion is valid otherwise False.

render(request, position)
Renders the criterion as html in order to displayed it within the management form.

update(value)
Updates the value of the criterion.

Parameters:

value The value the shop user has entered for the criterion.

OrderNumberGenerator

class lfs.plugins.OrderNumberGenerator
Base class from which all order number generators should inherit.

Attributes:

cart

The current cart of the customer.

customer

The customer of the order.

order

The order for which a new number is generated.

request

The current request

user

The user of the order.

get_form(**kwargs)
Returns the form which is used within the shop preferences management interface.

All parameters are passed to the form.

get_next(formatted=True)
Returns the next order number as string. Derived classes must implement this method.

Parameters:

formatted If True the number will be returned within the stored format, which is based on Python default
string formatting operators, e.g. %04d.

exclude_form_fields()
Returns a list of fields, which are excluded from the model form, see also get_form.

init(request, order)
Initializes the order number generator. This method is called automatically from LFS.

94 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

PaymentMethodProcessor

class lfs.plugins.PaymentMethodProcessor(request, cart=None, order=None)
Base class from which all 3rd-party payment method processors should inherit.

Attributes:

cart The current cart. This is only set, when create order time is ACCEPTED.

order The current order. This is only set, when create order time is IMMEDIATELY.

request The current request.

get_create_order_time()
Returns the time when the order should be created. It is one of:

PM_ORDER_IMMEDIATELY The order is created immediately before the payment is processed.

PM_ORDER_ACCEPTED The order is created when the payment has been processed and accepted.

get_pay_link()
Returns a link to the payment service to pay the current order, which is displayed on the thank-you page
and the order confirmation mail. In this way the customer can pay the order again if something has gone
wrong.

process()
Implements the processing of the payment method. Returns a dictionary with several status codes, see
below.

Return Values:

This values are returned within a dictionary.

accepted (mandatory) Indicates whether the payment is accepted or not. if this is False the customer
keeps on the checkout page and gets message (if given) below. If this is True the customer will be
redirected to next_url (if given).

message (optional) This message is displayed on the checkout page, when the order is not accepted.

message_location (optional) The location, where the message is displayed.

next_url (optional) The url to which the user is redirect after the payment has been processed. if this is
not given the customer is redirected to the default thank-you page.

order_state (optional) The state in which the order should be set. It’s just PAID. If it’s not given the state
keeps in SUBMITTED.

PriceCalculator

class lfs.plugins.PriceCalculator(request, product, **kwargs)
This is the base class that pricing calculators must inherit from.

Attributes:

product The product for which the price is calculated.

request The current request.

get_base_price(with_properties=True)
Returns the base price of the product.

Parameters:

6.2. Miscellaneous 95

django-lfs Documentation, Release dev

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_base_price_net(with_properties=True)
Returns the net base price of the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_base_price_gross(with_properties=True)
Returns the gross base price of the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_base_packing_price(with_properties=True)
Returns the base packing price of the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_base_packing_price_net(with_properties=True)
Returns the base packing net price of the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_base_packing_price_gross(with_properties=True)
Returns the base packing gross price of the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_customer_tax(with_properties=True)
Returns the calculated tax for the current customer and product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the taxes of the
default properties are added to the price.

get_customer_tax_rate()
Returns the tax rate for the current customer and product.

get_effective_price()
Effective price is used for sorting and filtering. Usually it is same as value from get_price but in some
cases it might differ (eg. if we add eco tax to product price)

get_for_sale_price(with_properties=True)
Returns the sale price for the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

96 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

get_for_sale_price_net(with_properties=True)
Returns the sale net price for the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_for_sale_price_gross(with_properties=True)
Returns the sale net price for the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_price(with_properties=True)
Returns the stored price of the product without any tax calculations. It takes variants, properties and sale
prices into account, though.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_price_net(with_properties=True)
Returns the net price of the product.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_price_gross(with_properties=True)
Returns the real gross price of the product. This is the base of all price and tax calculations.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_standard_price(with_properties=True)
Returns always the stored standard price for the product. Independent whether the product is for sale or
not. If you want the real price of the product use get_price instead.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_standard_price_net(with_properties=True)
Returns always the standard net price for the product. Independent whether the product is for sale or not.
If you want the real net price of the product use get_price_net instead.

Parameters:

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_standard_price_gross(with_properties=True)
Returns always the gross standard price for the product. Independent whether the product is for sale or
not. If you want the real gross price of the product use get_price_gross instead.

Parameters:

6.2. Miscellaneous 97

django-lfs Documentation, Release dev

with_properties If the instance is a configurable product and with_properties is True the prices of the
default properties are added to the price.

get_product_tax(with_properties=True)
Returns the calculated tax for the current product independent of the customer.

get_product_tax_rate()
Returns the stored tax rate of the product. If the product is a variant it returns the parent’s tax rate.

price_includes_tax()
Returns True if stored price includes tax. False if not.

ShippingMethodPriceCalculator

class lfs.plugins.ShippingMethodPriceCalculator(request, shipping_method)
Base class from which all 3rd-party shipping method prices should inherit.

Attributes:

request The current request.

shipping_method The shipping method for which the price is calculated.

get_price()
Returns the stored price without any calculations.

get_price_gross()
Returns the gross price of the shipping method.

get_price_net()
Returns the net price of the shipping method.

get_tax()
Returns the total tax of the shipping method.

get_tax_rate()
Returns the tax rate of the shipping method.

Settings

These are settings specific for LFS which can be changed within lfs_project/settings. For Django’s default
settings which are also relevant for LFS, please visit Django settings for an explanation.

Plug-ins

LFS_ORDER_NUMBER_GENERATOR The class which is responsible for the creation of order numbers. LFS
ships with: lfs_order_numbers.models.OrderNumberGenerator.

See also:

How to add an own order numbers generator

LFS_PAYMENT_METHOD_PROCESSORS List of list of available 3rd-party payment method processors,
whereas the first entry is the dotted name to a PaymentMethod and the second entry is the name, which is
displayed. These are provided for selection within the payment method management interface, e.g.:

LFS_PAYMENT_METHOD_PROCESSORS = [
["acme.ACMEPaymentMethod", _(u"ACME payment")],

]

98 Chapter 6. Information for Developers

http://docs.djangoproject.com/en/dev/ref/settings/

django-lfs Documentation, Release dev

See also:

How to add an own payment processor

LFS_PRICE_CALCULATORS List of list of available price calculators, whereas the first entry is the dotted name
to a PriceCalculator and the second entry is the name, which is displayed. These are provided for selection
within the shop preferences and the product. LFS is shipped with following entries:

LFS_PRICE_CALCULATORS = [
["lfs.gross_price.GrossPriceCalculator", _(u"Price includes tax")],
["lfs.net_price.NetPriceCalculator", _(u"Price excludes tax")],

]

See also:

How to add custom product pricing module

LFS_SHIPPING_METHOD_PRICE_CALCULATORS List of list of available shipping method price calculators,
whereas the first entry is the dotted name to a ShippingMethodPriceCalculator and the second entry is the name,
which is displayed. These are provided for selection within the shipping method. LFS is shipped with following
entries:

LFS_SHIPPING_METHOD_PRICE_CALCULATORS = [
["lfs.shipping.GrossShippingMethodPriceCalculator", _(u'Price includes tax')],
["lfs.shipping.NetShippingMethodPriceCalculator", _(u'Price excludes tax')],

]

See also:

How to add an own shipping price calculator

Miscellaneous

LFS_AFTER_ADD_TO_CART URL name to which LFS redirects after the customer has put a product into the
cart. LFS ships with lfs_added_to_cart, which displays the last product, which has been added to the
cart. A reasonable alternative is lfs_checkout_dispatcher, which redirects directly to the checkout
view.

LFS_CRITERIA List of list of available criteria, whereas the first entry is the dotted name to a criterion and the
second entry is the name of the criterion, which is displayed to the users. These criteria are provided to a shop
manager for selection for on several locations. LFS is shipped with following criteria:

LFS_CRITERIA = [
["lfs.criteria.models.CartPriceCriterion", _(u"Cart Price")],
["lfs.criteria.models.CombinedLengthAndGirthCriterion", _(u"Combined Length

→˓and Girth")],
["lfs.criteria.models.CountryCriterion", _(u"Country")],
["lfs.criteria.models.HeightCriterion", _(u"Height")],
["lfs.criteria.models.LengthCriterion", _(u"Length")],
["lfs.criteria.models.WidthCriterion", _(u"Width")],
["lfs.criteria.models.WeightCriterion", _(u"Weight")],
["lfs.criteria.models.ShippingMethodCriterion", _(u"Shipping Method")],
["lfs.criteria.models.PaymentMethodCriterion", _(u"Payment Method")],

]

See also:

Concept of criteria, How to add own criteria

6.2. Miscellaneous 99

django-lfs Documentation, Release dev

LFS_DELETE_IMAGES If this is set to True images on the file system are going to be deleted after an image
has been deleted via the management interface, otherwise they are left untouched. This setting is optional, the
default value is True.

LFS_DELETE_FILES If this is set to True files on the file system are going to be deleted after an file/attachment
has been deleted via the management interface, otherwise they are left untouched. This setting is optional, the
default value is True.

LFS_DOCS Base URL to the LFS docs. This is used for the context aware help link within the management interface.
Defaults to http://docs.getlfs.com/en/latest/.

LFS_LOCALE Sets the locale for the shop, which is the base for number formatting and the displayed currency. If
you don’t set it, the current locale of your Python is not touched at all. Example:

LFS_LOCALE = "en_US.UTF-8"

See also:

http://en.wikipedia.org/wiki/Locale, http://docs.python.org/library/locale.html

LFS_LOG_FILE Absolute path to LFS’ log file.

LFS_RECENT_PRODUCTS_LIMIT The amount of recent products which are displayed within the recent prod-
ucts portlet, e.g. 3.

Orders

LFS_EXTRA_ORDER_STATES Extra states for orders, eg. if you need to mark order as Delivered or such. Should
be list of tuples, each containing id and label. Note that id should start from high number (20 or higher) to avoid
conflicts if some new ORDER_STATES are added to LFS core. Example value might be: [(20, _(‘Delivered’))]

There is a signal: order_state_changed that is sent when order state was changed and can be used for some
special processing.

def handle_order_state_changed(sender, order, request, old_state, **kwargs):
pass

order_state_changed.connect(handle_order_state_changed)

LFS_ONE_PAGE_CHECKOUT_FORM The form which is used at checkout page. This setting is optional, the
default value is lfs.checkout.forms.OnePageCheckoutForm.

Addresses

LFS_AUTO_UPDATE_DEFAULT_ADDRESSES If True then default shipping and invoice addresses (set by cus-
tomer in his account settings) are automatically updated to the values from last order. Else, default addresses
are untouched and are used as defaults in every new order. This setting is optional, the default value is True.

LFS_CHECKOUT_NOT_REQUIRED_ADDRESS During checkout it is possible to not fill in one of the addresses
- it will be then copied from another one. By default Shipping address is same as Invoice address, but it can be
changed with this setting. Possible values are: shipping and invoice. Default is shipping. Note that
you’ll have to manually change checkout page template and lfs.js if you change it to invoice.

By default checkout_form (used at one_page_checkout.html) has method: no_address_field that will
return either no_shipping or no_invoice field, depending on this setting.

100 Chapter 6. Information for Developers

http://docs.getlfs.com/en/latest/
http://en.wikipedia.org/wiki/Locale
http://docs.python.org/library/locale.html

django-lfs Documentation, Release dev

Plugins

LFS_ADDRESS_MODEL The model which is used to store addresses. This setting is optional, the default value is
lfs.addresses.models.Address.

LFS_INVOICE_ADDRESS_FORM The form which is used for shipping addresses. This setting is optional, the
default value is lfs.addresses.forms.InvoiceAddressForm.

LFS_SHIPPING_ADDRESS_FORM The form which is used for shipping addresses. This setting is optional, the
default value is lfs.addresses.forms.ShippingAddressForm.

See also:

How to add own addresses

Required fields

LFS_INVOICE_COMPANY_NAME_REQUIRED If True the company name of the invoice address is required.
This setting is optional, the default value is False.

LFS_INVOICE_EMAIL_REQUIRED If True the e-mail of the shipping address is required. This setting is op-
tional, the default value is True.

LFS_INVOICE_PHONE_REQUIRED If True the phone of the invoice address is required. This setting is optional,
the default value is True.

LFS_SHIPPING_COMPANY_NAME_REQUIRED If True the company name of the shipping address is required.
This setting is optional, the default value is False.

LFS_SHIPPING_PHONE_REQUIRED If True the phone of the shipping address is required. This setting is op-
tional, the default value is False.

LFS_SHIPPING_EMAIL_REQUIRED If True the e-mail of the shipping address is required. This setting is op-
tional, the default value is False.

Units

LFS_UNITS A list of available units for the product.

LFS_PRICE_UNITS A list of available units for the product price.

LFS_BASE_PRICE_UNITS A list of available units for the product base price.

LFS_PACKING_UNITS A list of available units for the product packaging.

E-Mails

LFS_SEND_ORDER_MAIL_ON_CHECKOUT If true, an e-mail with the order details is send to the customer
after customer completes checkout screen.

LFS_SEND_ORDER_MAIL_ON_PAYMENT If true, an e-mail is send to the customer after the customer success-
fully pays for an order

6.2. Miscellaneous 101

django-lfs Documentation, Release dev

Reviews

REVIEWS_SHOW_PREVIEW True or False. If True the user will see a preview of his review.

REVIEWS_IS_NAME_REQUIRED True or False. If True the name of the review is required.

REVIEWS_IS_EMAIL_REQUIRED True or False. If True the name of the e-mail is required.

REVIEWS_IS_MODERATED True or False. If True the review must be moderated and published before it is
public.

PayPal

PAYPAL_RECEIVER_EMAIL Your PayPal id, e.g. info@getlfs.com.

PAYPAL_IDENTITY_TOKEN PayPal’s PDT identity token.

LFS_PAYPAL_REDIRECT True or False. If True the customer is automatically redirected to PayPal after he sub-
mitted his order. If False the thank-you page is displayed with a link to PayPal.

Management commands

LFS provides few management methods that should be used to keep your LFS instance clean. These are:

LFS Cleanup

Calls all LFS cleanup commands at once. Detailed definition of other cleanup commands can be found below.

$ bin/django lfs_cleanup

Cleanup customers

LFS creates Customer object for each customer that adds something to the cart. Sometimes these customers do not
proceed to the checkout so these Customer objects become useless. This command removes unnecessary customer
objects from database. You can run in with cron.daily.

$ bin/django cleanup_customers

Cleanup addresses

LFS creates Address objects in a number of places. These are bound to the customer or to the order. Sometimes it is
possible that Address objects become orphans (eg. when Customer object is removed by not using cleanup_customers
command). This command removes unnecessary address objects.

$ bin/django cleanup_addresses

Cleanup carts

LFS creates Cart objects when customers need to add something to the cart. These objects become unnecessary at
some point and it makes no sense to hold them forever. This command removes old carts

$ bin/django cleanup_carts

102 Chapter 6. Information for Developers

mailto:info@getlfs.com

django-lfs Documentation, Release dev

How-tos

How to add own addresses

In this how-to you will learn how to add own addresses to LFS, or better yet, how to adapt the address fields to your
needs.

You can download the example application here.

Create an Application

First you need to create a default Django application (or use an existing one), where you can put in your plugin. If you
do not know how to do this, please refer to the excellent Django tutorial.

Implement the Address Model

The main part of the application consists of a address model which must inherit from the BassAddress class.

from lfs.addresses.models import BaseAddress

class MyAddress(BaseAddress):
values_before_postal = ("firstname+", "lastname+", "company_name")
values_after_postal = ("phone", "email")

company_name = models.CharField(_("Company name"), max_length=50, blank=True,
→˓null=True)

phone = models.CharField(_("Phone"), blank=True, max_length=20)
mobile = models.CharField(_("Mobile"), blank=True, max_length=20, required=False)
email = models.EmailField(_("E-Mail"), blank=True, null=True, max_length=50)

In this case we add an extra field mobile to LFS’ default address. In generell you can add as many fields as you need.

The only LFS specific thing you have to take care of are two attributes: values_before_postal and
values_after_postal, which define the fields, which are displayed before and after the postal address fields.
This is used when the address is diplayed within LFS, e.g. within the orders or the customer management interface. If
you add an + at the end of the attribute there will be no div around the value. In this ways you can display fields in
one row.

Implement the Address Form

Another important part is to add the form, which is displayed to the shop customer when he needs to enter his address.
To makes things eaysier you should inherit from AddressBaseForm

django imports
from django import forms

lfs imports
from lfs.addresses.models import AddressBaseForm

my_addresses imports
from my_addresses.models import MyAddress

class MyAddressForm(AddressBaseForm):

6.3. How-tos 103

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

fields_before_postal = ("firstname", "lastname", "company_name")
fields_after_postal = ("phone", "mobile", "email")

class Meta(AddressForm.Meta):
model = MyAddress

The only LFS specific thing you have to take care of are two attributes: fields_before_postal and
fields_after_postal which define the fields which are displayed before and after the postal address fields.
This is used when the form is displayed within LFS, e.g. within the checkout page or within the my addresses
section.

Plug in the Components

Now, as the code is ready, you can easily plug in your own address:

1. Add your application to the PYTHONPATH

2. Add your application to settings.INSTALLED_APPS (before lfs_theme if you overwrite the default tem-
plates):

INSTALLED_APPS = (
...
"my_addresses",

)

3. Add the model to the LFS_ADDRESS_MODEL setting:

LFS_ADDRESS_MODEL = "my_addresses.models.MyAddress"

4. Add the forms to the LFS_INVOICE_ADDRESS_FORM and LFS_SHIPPING_ADDRESS_FORM setting:

LFS_INVOICE_ADDRESS_FORM = "my_addresses.forms.MyInvoiceAddressForm"
LFS_SHIPPING_ADDRESS_FORM = "my_addresses.forms.MyShippingAddressForm"

5. As the address is a new model, you have to synchronize your database:

$ bin/django syncdb

6. Restart your instance and the address should be displayed to the shop users for instance within the checkout
page.

Good to Know

• You can provide different templates to render the addresses. By default LFS tries try to get the spe-
cific template (address_view.html). If it doesn’t exist, it tries to get one of the specific templates
(invoice_address_view.html or shipping_address_view.html).

• You can provide different templates to render the address forms. By default LFS tries try to get the spe-
cific template (address_form.html). If it doesn’t exist, it tries to get one of the specific templates
(invoice_address_form.html or shipping_address_form.html).

• By default LFS automatically updates default addresses to the values from last order. It is possible to change
this behavior by setting

LFS_AUTO_UPDATE_DEFAULT_ADDRESSES to False.

104 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

See Also

• Address Settings

How to add own templates

In this how-to you will learn how to add your own templates for categories and products.

Generally

The content of products and categories are rendered by templates. LFS ships with several default templates and you
can add your own.

All registered templates for categories can be selected within the View tab of the Category Management Interface.
All registered templates for products can be selected within the Data tab of the Product Management interface.

Please refer to the default templates in order to find out which information are provided within the templates. You can
also add your customer template tags in order to provide more functionality.

Categories

In order to add a new template for categories go to lfs.catalog.settings and add tuple to
CATEGORY_TEMPLATES.

Example 1

(0,{"file":"%s/%s" % (CAT_PRODUCT_PATH ,"default.html"),
"image":IMAGES_PATH + " /product_default.png",
"name" : _(u"Category with products"),
}),

Which means:

0: The unique id of the category template.

file: The absolute path to the template. CAT_PRODUCT_PATH means this is a template which displays the products
of a category.

image: The absolute path to the preview image (not used anymore).

name: The pretty name of the template, which is displayed within the template select box.

Example 2

(1,{"file": "%s/%s" % (CAT_CATEGORY_PATH ,"default.html"),
"image": IMAGES_PATH + "/category_square.png",
"name": _(u"Category with subcategories"),
}),

Which means:

1: Unique id of the category template.

6.3. How-tos 105

django-lfs Documentation, Release dev

file: The absolute path to the template. CAT_PRODUCT_PATH means this is a template which displays the sub
categories of a category.

image: The absolute path to the preview image (Not used anymore).

name: The pretty name of the template, which is displayed within the template select box.

Products

In order to add a new template for products go to lfs.catalog.settings and add tuple to
PRODUCT_TEMPLATES.

Example

(0, {"file" : "%s/%s" % (PRODUCT_PATH, "product_inline.html"),
"image" : IMAGES_PATH + "/product_default.png",
"name" : _(u"Default template")
},),

Which means:

0: The unique id of the product template.

file: The absolute path to the template.

image: The absolute path to the preview image (Not used anymore).

name The pretty name of the template, which is displayed within the template select box.

How to add an own payment processor

In this how-to you will learn how to add a own payment processor.

Create an application

First you need to create a default Django application (or use an existing one), where you can put in your plugin. If you
do not know how to do this, please refer to the excellent Django tutorial.

Implement the PaymentMethodProcessor class

The main part of the plugin consists of a class which must provide a certain API.

Create the class

Create a class which inherits from lfs.plugins.PaymentMethodProcessor:

from lfs.plugins import PaymentMethodProcessor

class MyPaymentMethodProcessor(PaymentMethodProcessor):
pass

106 Chapter 6. Information for Developers

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

Add the process method

def process(self):
total = self.order.price
return {

"accepted": True,
"next_url": "http://www.acme.com/payment?id=4711&total=%s" % total,

}

This method is called from LFS when the shop customer submits the checkout page (while selected this payment
method). Within that method you can do whatever it is necessary to process your payment, e.g.:

• Call an API via HTTP(S)

• Redirect to another URL

Return Value

The process method must return a dictionary with following keys (most of them are optional):

accepted (mandatory) Indicates whether the payment is accepted or not. if this is False the customer keeps on the
checkout page and gets the message below. If this is True the customer will be redirected to next_url or to
LFS’ thank-you page

message (optional) This message is displayed on the checkout page, when the order is not accepted.

message_location (optional) The location, where the message is displayed.

next_url (optional) The url to which the user is redirect after the payment has been processed. if this is not given the
customer is redirected to the default thank-you page.

order_state (optional) The state in which the order should be set. It’s just PAID. If it’s not given the state keeps in
SUBMITTED.

Add the get_create_order_time method

from lfs.plugins import PM_ORDER_IMMEDIATELY

def get_create_order_time(self):
return PM_ORDER_ACCEPTED

This method is called from LFS to determine when the order is to be created and must return one of following values:

PM_ORDER_IMMEDIATELY The order is created immediately before the payment is processed.

PM_ORDER_ACCEPTED The order is created when the payment has been processed and accepted.

Add the get_pay_link method

In order to provide a link to the customer to re-visit the payment provider and pay his order (if something did go
wrong) LFS calls get get_pay_link method or your class (this is optional).

def get_pay_link(self):
return "http://www.acme.com/payment?id=4711&total=%s" % total

6.3. How-tos 107

django-lfs Documentation, Release dev

The complete plugin

Following all pieces are sticked together to the complete plugin:

from lfs.plugins import PaymentMethodProcessor
from lfs.plugins import PM_ORDER_IMMEDIATELY

class ACMEPaymentMethodProcessor(PaymentMethodProcessor):
"""
Implements the ACME payment processor.
"""
def process(self):

return {
"accepted": True,
"next_url": self.get_pay_link(),

}

def get_create_order_time(self):
return PM_ORDER_IMMEDIATELY

def get_pay_link(self):
total = self.order.price
return "http://www.acme.com/payment?id=4711&total=%s" % total

In this example the order is created immediately and the customer is redirected to the ACME page in order to pay his
order. After he has paid he might be redirected to the thank-you page of LFS, but this is completely up to ACME.
However, if something goes wrong while he is paying he can always go back to ACME to pay his order because he
gets the pay link via the order confirmation mail.

Plug in your payment method

Now as the code is ready, you can easily plugin your payment method:

1. Add your application to the PYTHONPATH.

2. Add the class to the LFS_PAYMENT_METHOD_PROCESSORS setting.

3. If your are using models (which is completely up to you), add the application to settings.INSTALLED_APPS
and sync your database.

4. Add a new payment method and select your payment method within the module field.

5. Select the type of your payment method. Following types are provided:

• Plain - no further fields are displayed.

• Bank - fields to enter a bank account are displayed.

• Credit Card - fields to enter a credit cart are displayed.

6. Save the payment method.

Further hints

• Within the PaymentMethodProcessor request, the current order or the current cart are available as instance
variables:

108 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

self.request
self.cart (only when get_create_order_time returns PM_ORDER_ACCEPTED)
self.order (only when get_create_order_time returns PM_ORDER_IMMEDIATELY)

• When an external payment processor redirects to LFS the current order is still in the session. This means you
can redirect to an own view and set the order state to PAID, for instance:

from django.core.urlresolvers import reverse
from django.http import HttpResponseRedirect
from lfs.plugins import PAID

def acme_callback_success_view(request):
order = request.session.get("order")
order.state = PAID
order.save()

return HTTPRedirectResponse(reverse("lfs_thank_you"))

• All fields of the checkout form are available within the process method via the request variable, e.g.:

request.POST.get("invoice_firstname")

See also

• PaymentMethodProcessor API

How to add custom product pricing module

In this tutorial you will learn how to your own custom product pricing module.

Create an application

First you need to create a default Django application (or use an existing one). If you do not know how to do this,
please refer to the excellent Django tutorial.

Implement the price calculator class

Within __init__.py file of your application (or anywhere you choose) create a class that inherits from
lfs.plugins.PricingCalculator and implement all inherited methods.

from lfs.plugins import PriceCalculator

class CustomPriceCalculator(PriceCalculator):

def get_price(self, with_properties=True):
return self.get_price_net()

... Other Methods...

6.3. How-tos 109

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

Plug in the custom price calculator

1. Add your application to the PYTHONPATH.

2. Add the application to settings.INSTALLED_APPS.

3. If your are using models (which is completely up to you), sync your database.

4. Edit the dictionary lfs.core.settings.LFS_PRICE_CALCULATORS to make your custom pricing calculator
available to products in the manage interface

LFS_PRICE_CALCULATORS = [
["lfs.gross_price.GrossPriceCalculator", _(u"Price includes tax")],
["lfs.net_price.NetPriceCalculator", _(u"Price excludes tax")],
["mycustom_price.CustomPriceCalculator", _(u"My Pricing Calculator")],

]

Set the shop default price calculator

1. Go to the LFS Management Interface.

2. Select Shop / Preferences.

3. Select Default Values and go the Price Calculator section.

4. Select your new pricing calculator from the drop down menu of choices.

5. Save the default values.

Note: All products with an unset price calculator will default to using the shop price calculator.

Set the product pricing calculator

1. Browse to http://yourshopdomain/manage and login.

2. Select Catalog / Product.

3. Select the product whose price calculator you wish to change.

4. Select the Data Tab and scroll to the Prices section.

5. Select your new pricing calculator from the drop down menu.

6. Click on Save Data.

7. Now browse to the customer view of the product and you should see the price as calculated by your custom
pricing calculator.

How to use localized addresses

Address localization is turned on by default in LFS. To turn off Address l10n in settings.py set:

POSTAL_ADDRESS_L10N = False

110 Chapter 6. Information for Developers

http://yourshopdomain/manage

django-lfs Documentation, Release dev

Customize address labels and requirement

If you wish to customize the address labels and whether the address line is required or not, you can add the following
variables to settings.py:

POSTAL_ADDRESS_LINE1, POSTAL_ADDRESS_LINE2, POSTAL_ADDRESS_CITY,
POSTAL_ADDRESS_STATE, POSTAL_ADDRESS_CODE

Each of these variables is set to a tuple of the format:

('label', True/False)

label is used to label the field, and the second boolean value sets whether the field is required or not, e.g.:

POSTAL_ADDRESS_LINE1 = ("Department", True)

How to create a product export script

Overview

LFS provides a generic export engine for products (see here for more). In this tutorial you will learn how to create
your own scripts to format the data like you want to.

Create an application

First you need to create a default Django application (or use an existing one). If you do not know how to do this,
please refer to the excellent Django tutorial.

Create the code

Within the __init__.py of your application create a function that will return the products, like so:

1 # python imports
2 import csv
3

4 # django imports
5 from django.http import HttpResponse
6 from django.core.mail import send_mail
7

8 # lfs imports
9 from lfs.export.utils import register

10

11 def export(request, export):
12 """Export method for acme.com
13 """
14 response = HttpResponse(mimetype="text/csv")
15 response["Content-Disposition"] = "attachment; filename=acme.txt"
16

17 writer = csv.writer(response, delimiter=";", quotechar='"', quoting=csv.QUOTE_ALL)
18

19 for product in export.get_products():
20 writer.writerow(product.id, product.get_name())
21

22 return response

6.3. How-tos 111

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

23

24 register(export, "acme.com")

The code explained

1-6 Some simple Python and Django imports. These may vary for your code.

9 Imports the register method to register your script.

11 The function which will contain your code to create the exported data.

14/15 We decided to give a response with a download back. Your code may vary here.

16 We decided to use Python csv modules. You code may vary here.

19 All selected products can be get with the get_products method of the passed export object.

24 The registration of your function. This line must be called while Django is starting up.

Plug in the export script

Now go Utils / Export within the LFS Management Interface, create a new export, select the products and your
newly script and call it via the Export button. (See here for more).

How to add own action groups

Overview

In this how-to you will learn how to add new Actions Groups and how to use them within your templates.

Add a new action group

1. Login as admin.

2. Go to Django’s admin interface:

http://localhost:8000/admin/

3. Go to Core / Action groups.

4. Click on the Add Action Group button.

5. Enter the name of the group, e.g. Sidebar.

Display the actions within your templates

Insert the actions tag to your template as following:

{% actions Sidebar %}
{% for action in actions %}

<div>

{{ action.title }}

112 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

</div>
{% endfor %}

Note: We pass the above given group name to the actions tab. In this case Sidebar.

Add actions to the group

1. Open the LMI and go to Shop / Actions.

2. Click on the Add Action button.

3. Fill in the provided form and select your new group.

4. Click on the Save Action button.

See also

• General about actions

• Actions management interace

How to create a theme

In this how-to you will learn how to create a theme for LFS.

Note: You can download the whole theme here.

Preparations

First you have to create a new Django application. This is beyond the purpose of this tutorial and you should refer to
Django’s excellent tutorial if you want to learn more.

In short, your starting file structure should look like this:

mytheme
__init__.py
templates

lfs

Registration

Register mytheme to Django’s template engine.

1. Move the mytheme folder to the PYTHONPATH.

The easiest way to do that is to put it into the lfs_project folder of the buildout.

2. Register the theme

Add mytheme to INSTALLED_APPS before lfstheme:

6.3. How-tos 113

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

INSTALLED_APPS = (
...
"mytheme",
"lfstheme",
"django.contrib.admin",
...

Copy templates

Now copy the templates you want to change into the lfs folder of mytheme and adapt them to your needs.

Important: you have to keep the original path, e.g: base.html must be within the root of the lfs folder whereas the
cart portlet (cart.html) must be within the portlets folder:

mytheme
__init__.py
templates

lfs
base.html
portlets

cart.html

Use own css

To use own CSS several steps are necessary.

1. Create a static folder within mytheme:

mytheme
static
...

2. Within that create a new CSS-file, e.g. mytheme.css and add your CSS rules, e.g.:

.breadcrumbs li {
color: red !important;

}

Alternatively you might copy main.css from lfstheme and adapt it to your needs.

3. Go to the lfs_project/media folder and create a symbolic link to the static folder:

$ ln -s <path/to/buildout>/lfs_project/mytheme/static mytheme

4. Copy base.html to mytheme/templates/lfs (if you haven’t done it so far)

5. Include your CSS file to the header:

<link rel="stylesheet" type="text/css" href="{{ STATIC_URL }}mytheme/mytheme.css">

6. Optionally delete the link to main.css (if you just want to use your own CSS).

How to add an own order numbers generator

114 Chapter 6. Information for Developers

django-lfs Documentation, Release dev

Overview

LFS order numbers generator is pluggable. In this tutorial you will learn how to add an own one.

Please see also the complete example application or refer to the default implementation of LFS within
lfs_order_numbers.

Create an application

First you need to create a default Django application (or use an existing one). If you do not know how to do this,
please refer to the excellent Django tutorial.

The structure of the application should look at least like this:

my_order_numbers
__init__.py
models.py

Implement the application

Add the model

Within models.py file of your application create a class called OrderNumberGenerator which inherits from
LFS’ OrderNumberGenerator base class and add a method to it called get_next:

from lfs.plugins import OrderNumberGenerator as Base

class OrderNumberGenerator(Base):
def get_next(self, formatted=True):

return "DOE-4711"

The get_next method is called when the shop customer submits a new order. It must return a character value which
will become the order number of the new order.

Plug in your order number generator

Now as the code is ready, you can easily plugin your payment method:

1. Add your application to the PYTHONPATH.

2. Add your class to settings.py

LFS_ORDER_NUMBER_GENERATOR = “my_order_numbers.models.OrderNumberGenerator”

3. Add your application to settings.INSTALLED_APPS and sync the database.

And that’s it

You should now see your form within the Order Numbers tab within Shop/Preference and the get_next
method of your model should be called to generate a new order number.

6.3. How-tos 115

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

Optionally Add your own Template

Optionally you can add your own HTML for the management interface. For this just add the order_numbers_tab.html
template to your application:

my_order_numbers
templates

manage
order_numbers

order_numbers_tab.html

Please refer to the standard template of LFS to get more details. You can find this on following place:

lfs/templates/manage/order_numbers/order_numbers_tab.html

In this case please make sure that your my_order_numbers application stands before lfs within
INSTALLED_APPS of settings.py so that LFS’ default order_numbers_tab.html template is overwrit-
ten.

Further hints

• The form is automatically created from the model you provide. However you can provide a own own by
overwriting the get_form method. See the API for more.

• If you just want to exclude certain fields from the automatically generated form you can overwrite the
exclude_form_fields. The return value is just passed to the exclude attribute of the from Meta class.
See the API for more.

Available information

Within the get_next method of your new class you have access to following information:

self.request The current request

self.user The current user

self.customer The current customer

self.cart The current cart

self.order The order which is about to be created.

Please note that you have also access to the products of the order via the items attribute. For instance:

for item in self.order.items.all():
product = item.product

See the also the Order and OrderItem classes for more information.

How to add an own shipping price calculator

In this how to you will learn how to add your own shipping price calculator.

Create an application

First you need to create a default Django application (or use an existing one), where you can put in your plugin. If you
do not know how to do this, please refer to the excellent Django tutorial.

116 Chapter 6. Information for Developers

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

Implement the ShippingMethodPriceCalculator class

The main part of the plugin consists of a class which must provide a certain API.

Create the class

Create a class which inherits from lfs.plugins.ShippingMethodPriceCalculator:

from lfs.plugins import ShippingMethodPriceCalculator

class MyShippingMethodPriceCalculator(ShippingMethodPriceCalculator):
pass

Add the get_price_net and get_price_gross methods

This methods are called from LFS to display the shipping price or to calculate the total price of the cart or order.

def get_price_net(self):
This doesn't make much sense, but the net price is always 11.0
return 11.0

def get_price_gross(self):
return 11.0 * ((100 + self.shipping_method.tax.rate) / 100)

The complete plugin

Following all pieces are sticked together to the complete plugin:

from lfs.plugins import ShippingMethodPriceCalculator

class MyShippingMethodPriceCalculator(ShippingMethodPriceCalculator):
def get_price_net(self):

This doesn't make much sense, but the net price is always 11.0
return 11.0

def get_price_gross(self):
return 11.0 * ((100 + self.shipping_method.tax.rate) / 100)

Plug in your payment method

Now as the code is ready, you can easily plugin your shipping method price calculator:

1. Add your application to the PYTHONPATH.

2. Add the class to the LFS_SHIPPING_METHOD_PRICE_CALCULATORS setting.

3. If your are using models (which is completely up to you), add the application to settings.INSTALLED_APPS
and sync your database.

4. Add a new shipping method and select your price calculator within the price_calculator field.

5. Save the shipping method.

6.3. How-tos 117

django-lfs Documentation, Release dev

Further hints

• Within the ShippingMethodPriceCalculator the current request and the shipping method are available
as instance variables:

self.request
self.shipping_method

• With the request you have access to the current cart (in case you need it):

from lfs.cart.utils import get_cart
cart = get_cart(self.request)

• With the request you have access to the current customer (in case you need it):

from lfs.customer.utils import get_customer
customer = get_customer(self.request)

How to integrate localized version of TinyMCE

LFS ships with main package of TinyMCE that doesn’t contain any translation files. It is easy to use internationalized
version of TinyMCE by adding few things into your theme.

Steps

1. Download TinyMCE

Go to TinyMCE website and download TinyMCE x.x jQuery package

2. Extract TinyMCE into your theme

Extract downloaded TinyMCE into your Theme, e.g. theme/static/manage/tiny_mce_x_x/

3. Download TinyMCE language file(s)

Go to TinyMCE website and download language file(s) that you need

4. Extract TinyMCE language files into your theme

Go to folder where you’ve just extracted main package of TinyMCE, e.g.: theme/static/manage/
tiny_mce_x_x/ and extract language files into proper directories.

5. Copy manage_base.html to your theme

Copy lfs/templates/manage/manage_base.html to your theme: mytheme/templates/
manage/manage_base.html

6. Copy lfs_tinymce.js to your theme

Copy lfs/static/js/lfs_tinymce.js to your theme: mytheme/static/js/lfs_tinymce.
js (if you use different path then you have to update it at manage_base.html in step 7)

7. Modify lfs_tinymce.js (copy located at your theme)

Change/add highlighted parts of TinyMCE initialization script:

// Theme options
$(selector).tinymce({

// Location of TinyMCE script
script_url : '/static/manage/tiny_mce_x_x/tiny_mce.js',

118 Chapter 6. Information for Developers

http://www.tinymce.com/download/download.php
http://www.tinymce.com/i18n/index.php?ctrl=lang&act=download&pr_id=1

django-lfs Documentation, Release dev

// General options
theme : "advanced",
plugins : "safari,save,iespell,directionality,fullscreen,xhtmlxtras,media",

theme_advanced_buttons1 : buttons,
theme_advanced_buttons2 : "",
theme_advanced_buttons3 : "",
theme_advanced_buttons4 : "",
theme_advanced_toolbar_location : "top",
theme_advanced_toolbar_align : "left",
save_onsavecallback : "save",
relative_urls : false,
cleanup : false,
height : height,
language : LFS_LANGUAGE,
content_css : "/static/css/tinymce_styles.css",
setup : function(ed) {

ed.addButton('image', {
onclick : function(e) {

imagebrowser(e, ed);
}

});
}

});

8. Customize manage_base.html at your theme

Replace:

<script type="text/javascript" src="{{ STATIC_URL }}tiny_mce-3.4.2/jquery.tinymce.
→˓js"></script>

with (use path to TinyMCE folder that you created in step 2):

<script type="text/javascript" src="{{ STATIC_URL }}manage/tiny_mce_x_x/jquery.
→˓tinymce.js"></script>

Add following code to <head> section:

<script type="text/javascript">
var LFS_LANGUAGE = '{{ LANGUAGE_CODE|lower }}';

</script>

Note that for some languages LANGUAGE_CODE used by Django may differ from language code used by
TinyMCE. For such cases you’ll probably have to write your own tag/filter that will map Django’s language
code to TinyMCE’s language code (or you’ll just hard code it).

How to add own criteria

In this how-to you will learn how to add own criteria to LFS.

The goal in this how-to is to create a criterion, for which the shop manager can enter a SKU and decide (via operators)
whether the criterion is valid if the product with the entered SKU is within the cart or not.

You can download the example application here.

6.3. How-tos 119

django-lfs Documentation, Release dev

Create an application

First you need to create a default Django application (or use an existing one), where you can put in your plugin. If you
do not know how to do this, please refer to the excellent Django tutorial.

Implement the Criterion Model

The main part of the application consists of a criterion model which must inherit from the Criterion base class.

Create the Class

class ProductCriterion(Criterion):
value = models.CharField(max_length=100)

The only attribute we need is the value the shop manager will save for the criterion. The attribute can have any type
you need. In this example we use a simple character field. The entered SKU is checked within the products in the cart.
Dependent on the chosen operator the criteria is valid if the product is within the cart or not.

Implement necessary Methods

In the next steps we implement all necessary methods which are needed to make the criterion work. In this case these
are get_operators and is_valid.

The get_operators method needs to return the available operators for this criterion. It is a list of list, whereas the
first value is an integer and the second value is the name of the operator.

def get_operators(self):
return [

[0, _(u"Is in cart")],
[1, _(u"Is not in cart")],

]

The is_valid method needs to return a boolean. If it returns True the criterion is considered valid, it returns
False the criterion is considered not valid.

def is_valid(self):
if self.product:

return self.value == self.product.sku
elif self.cart:

result = any([self.value == item.product.sku for item in self.cart.get_
→˓items()])

return result if self.operator == 0 else not result
else:

return False

Note: Within the is_valid method (as in all methods of the Criterion class) following attributes are available:

product This is only set, when the criterion is called from the product detail view otherwise it is None.

cart The current cart of the current user.

request The current request.

120 Chapter 6. Information for Developers

http://docs.djangoproject.com/en/dev/intro/tutorial01/

django-lfs Documentation, Release dev

Plug in the Criterion

Now as the code is ready, you can easily plugin your own criterion:

1. Add your application to the PYTHONPATH

2. Add your application to settings.INSTALLED_APPS and sync your database:

INSTALLED_APPS = (
...
"product_criterion",

)

3. Add the class to the LFS_CRITERIA setting:

LFS_CRITERIA = [
...
["product_criterion.models.ProductCriterion", _(u"Product Criterion")],

]

4. As all criteria are models, you have to synchronize your database:

$ bin/django syncdb

5. Restart your instance and the criterion should be available for selection, for instance within the discount criteria
tab.

And that’s it

You should now see your criterion within the criteria tab of Discounts for instance. You can enter a product SKU
to it and select one of the above mentioned operators.

Good to know

• You can also create criteria with select or multiple select fields. See the API or the default Country criterion
within lfs.criteria.models for more.

• You can override more than the two mentioned methods above. See the Criterion API which methods are
provided by the base class.

See Also

• Criteria concept

• Criterion API

• Look into the default criteria within lfs.criteria.models to see how these are implemented

6.3. How-tos 121

django-lfs Documentation, Release dev

122 Chapter 6. Information for Developers

CHAPTER 7

Miscellaneous Information

123

django-lfs Documentation, Release dev

124 Chapter 7. Miscellaneous Information

CHAPTER 8

Indices and Tables

• glossary

• genindex

• search

125

django-lfs Documentation, Release dev

126 Chapter 8. Indices and Tables

Index

A
Action, 26, 31
Average Rating Portlet, 24

B
Benchmarking LFS, 89

C
Cart, 59
Cart Portlet, 24
Categories Portlet, 24
Category, 14, 40
Changing models, 90
Criteria, 15
Customer, 56
Customer Tax, 39

D
Delivery time, 27, 32
Delivery Time Portlet, 24
Developing LFS, 87
Discount, 66
Downloadable

File, 54

E
exclude_form_fields() (lfs.plugins.OrderNumberGenerator

method), 94

F
Featured, 63
Featured Products Portlet, 25
File

Downloadable, 54
Filter Portlet, 25
For Sale Portlet, 25

G
get_base_packing_price() (lfs.plugins.PriceCalculator

method), 96

get_base_packing_price_gross()
(lfs.plugins.PriceCalculator method), 96

get_base_packing_price_net()
(lfs.plugins.PriceCalculator method), 96

get_base_price() (lfs.plugins.PriceCalculator method), 95
get_base_price_gross() (lfs.plugins.PriceCalculator

method), 96
get_base_price_net() (lfs.plugins.PriceCalculator

method), 96
get_create_order_time() (lfs.plugins.PaymentMethodProcessor

method), 95
get_customer_tax() (lfs.plugins.PriceCalculator method),

96
get_customer_tax_rate() (lfs.plugins.PriceCalculator

method), 96
get_effective_price() (lfs.plugins.PriceCalculator

method), 96
get_for_sale_price() (lfs.plugins.PriceCalculator

method), 96
get_for_sale_price_gross() (lfs.plugins.PriceCalculator

method), 97
get_for_sale_price_net() (lfs.plugins.PriceCalculator

method), 96
get_form() (lfs.plugins.OrderNumberGenerator method),

94
get_next() (lfs.plugins.OrderNumberGenerator method),

94
get_operators() (lfs.criteria.models.Criterion method), 93
get_pay_link() (lfs.plugins.PaymentMethodProcessor

method), 95
get_price() (lfs.plugins.PriceCalculator method), 97
get_price() (lfs.plugins.ShippingMethodPriceCalculator

method), 98
get_price_gross() (lfs.plugins.PriceCalculator method),

97
get_price_gross() (lfs.plugins.ShippingMethodPriceCalculator

method), 98
get_price_net() (lfs.plugins.PriceCalculator method), 97
get_price_net() (lfs.plugins.ShippingMethodPriceCalculator

method), 98

127

django-lfs Documentation, Release dev

get_product_tax() (lfs.plugins.PriceCalculator method),
98

get_product_tax_rate() (lfs.plugins.PriceCalculator
method), 98

get_selectable_values() (lfs.criteria.models.Criterion
method), 93

get_standard_price() (lfs.plugins.PriceCalculator
method), 97

get_standard_price_gross() (lfs.plugins.PriceCalculator
method), 97

get_standard_price_net() (lfs.plugins.PriceCalculator
method), 97

get_tax() (lfs.plugins.ShippingMethodPriceCalculator
method), 98

get_tax_rate() (lfs.plugins.ShippingMethodPriceCalculator
method), 98

get_template() (lfs.criteria.models.Criterion method), 93
get_value() (lfs.criteria.models.Criterion method), 93
get_value_type() (lfs.criteria.models.Criterion method),

93
Global images, 30, 39
Google Analytics, 35

H
HTML, 23, 30, 53, 55

I
Images, 30, 39
init() (lfs.plugins.OrderNumberGenerator method), 94
Installation, 2
Invoice Address, 56
is_valid() (lfs.criteria.models.Criterion method), 93

L
Latest Portlet, 25
lfs.criteria.models.Criterion (built-in class), 92
lfs.plugins.OrderNumberGenerator (built-in class), 94
lfs.plugins.PaymentMethodProcessor (built-in class), 95
lfs.plugins.PriceCalculator (built-in class), 95
lfs.plugins.ShippingMethodPriceCalculator (built-in

class), 98

M
Management commands, 102
Manufacturers, 15
Marketing, 28

O
Order, 57
Order Numbers, 37
Orders, 57
Overview, 1

P
Page, 30, 53
Page Portlet, 25
Payment Method, 28
Payment method, 34, 77
Portlet

Average Rating, 24
Cart, 24
Categories, 24
Delivery Time, 24
Featured Product, 25
Filter, 25
For Sale, 25
Latest, 25
Page, 25
Recent, 26
Related, 26
Text, 26
Top Seller, 26

Portlets, 23, 37, 49
Price Calculator, 35, 42, 50, 109
price_includes_tax() (lfs.plugins.PriceCalculator

method), 98
process() (lfs.plugins.PaymentMethodProcessor method),

95
Product, 13, 42, 50

Configurable, 14
Default, 13
Variant, 14
with Variants, 14

Property, 20, 22, 52
Property Group, 51

R
Recent Portlet, 26
Related Portlet, 26
render() (lfs.criteria.models.Criterion method), 94
Reviews, 30, 61

Mails, 68

S
SEO, 37, 49
Settings, 98
Shipping Address, 56
Shipping Method, 37, 80
Shipping Methods, 27
Static Block, 23, 45, 55

T
Tax

Customer, 39
Product, 38

Taxes, 22

128 Index

django-lfs Documentation, Release dev

Template, 45
Testing LFS, 88
Text Portlet, 26
Top Seller Portlet, 26
Topseller, 64

U
update() (lfs.criteria.models.Criterion method), 94
Upgrade notes, 5

V
Voucher, 67
Voucher Group, 67

Index 129

	Overview
	Installation
	Upgrade notes
	Getting Started
	Information for Users
	Information for Developers
	Miscellaneous Information
	Indices and Tables

